(本小題滿分14分)設(shè)為奇函數(shù),為常數(shù).

(1)求的值;

(2)求的值;

(3)若對于區(qū)間[3,4]上的每一個的值,不等式>恒成立,求實數(shù)的取值范圍.

 

【答案】

(1);

(2);

(3)。

【解析】

試題分析:(1)因為f(x)為奇函數(shù),所以f(-x)+f(x)=0恒成立,從而可求出b的值。

(2)由(1)知,得這是求解此步的關(guān)鍵,然后再利用對數(shù)的運算法則求值即可。

 (3) 對于區(qū)間[3,4]上的每一個的值,不等式>恒成立轉(zhuǎn)化為當恒成立,然后再構(gòu)造函數(shù):研究出h(x)是增函數(shù),從而可求出h(x)的最小值,問題得解。

(1)∵ 為奇函數(shù)

,即     …2分

,解得                     ………………………4分

顯然不成立,舍去。所以  ………………………………………5分

(2)由(1)知

……6分

 =………………………9分

(3)依題意 對于區(qū)間[3,4]上的每一個的值,不等式>恒成立

則  當恒成立…………………10分

         …………………11分

在[3,4]上單調(diào)遞增,單調(diào)遞減

所以在[3,4]上單調(diào)遞增    …………………………………………12分

∴ 只需即可

    所以    ……………………………………………14分

考點:函數(shù)的奇偶性,單調(diào)性,復(fù)合函數(shù)的單調(diào)性的判斷,以及不等式恒成立問題。

點評:根據(jù)函數(shù)的奇偶性確定式子中的參數(shù)值是常見題型。不等式恒成立的問題一般要考慮分離參數(shù),然后轉(zhuǎn)化為函數(shù)最值來研究。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達式,并求f(x)的最小正周期;
(II)當x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設(shè)A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求,滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習冊答案