分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(Ⅱ)求出f(x)的導(dǎo)數(shù),得到f′(x)遞增,通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間,從而求出a的具體范圍即可.
解答 解:(Ⅰ)$f'(x)={e^x}-x-\frac{1}{2}$,
令g(x)=f'(x),則g'(x)=ex-1,
則當(dāng)x∈(-∞,0)時(shí),g'(x)<0,則f'(x)單調(diào)遞減,
當(dāng)x∈(0,+∞)時(shí),g'(x)>0,則f'(x)單調(diào)遞增,
所以有$f'(x)≥f'(0)=\frac{1}{2}>0$,
所以f(x)在(-∞,+∞)上遞增.
(Ⅱ)當(dāng)x≥0時(shí),f'(x)=ex-x-a,令g(x)=f'(x),
則g'(x)=ex-1≥0,則f'(x)單調(diào)遞增,
f'(x)≥f'(0)=1-a;
當(dāng)a≤1即f'(x)≥f'(0)=1-a≥0時(shí),
f(x)在(0,+∞)上遞增,f(x)≥f(0)=0成立;
當(dāng)a>1時(shí),存在x0∈(0,+∞),使f'(x0)=0,
則f(x)在(0,x0)上遞減,
則當(dāng)x∈(0,a)時(shí),f(x)<f(0)=0,不合題意,
綜上:a≤1.
點(diǎn)評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com