15.某微信群中有甲、乙、丙、丁、戊五個(gè)人玩搶紅包游戲,現(xiàn)有4個(gè)紅包,每人最多搶一個(gè),且紅包全部搶完,4個(gè)紅包中有兩個(gè)2元,1個(gè)3元,1個(gè)4元(紅包中金額相同視為相同紅包),則甲、乙都搶到紅包的情況有36種.(用數(shù)字作答)

分析 根據(jù)紅包的性質(zhì)進(jìn)行分類,利用分類計(jì)數(shù)原理可得結(jié)論.

解答 解:若甲乙搶的是一個(gè)2元和一個(gè)3元的,剩下2個(gè)紅包,被剩下的3人中的2個(gè)人搶走,有A22A32=12種,
若甲乙搶的是一個(gè)2和一個(gè)4元的,剩下2個(gè)紅包,被剩下的3人中的2個(gè)人搶走,有A22A32=12種,
若甲乙搶的是一個(gè)3和一個(gè)4元的,剩下2個(gè)紅包,被剩下的3人中的2個(gè)人搶走,有A22C32=6種,
若甲乙搶的是兩個(gè)2元,剩下2個(gè)紅包,被剩下的3人中的2個(gè)人搶走,有A32=6種,
根據(jù)分類計(jì)數(shù)原理可得,共有36種,
故答案為:36.

點(diǎn)評(píng) 本題考查了分類計(jì)數(shù)原理,關(guān)鍵是分類,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)向量$\overrightarrow a=(-1,3)$,$\overrightarrow b=(2,1)$,若($\overrightarrow{a}$+λ$\overrightarrow$)⊥($\overrightarrow{a}$-λ$\overrightarrow$)且λ>0,則實(shí)數(shù)λ=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知全集為R,且集合A={x|log2(x+1)<2},B={x|$\frac{x-2}{x+3}$≥0},則A∩(∁RB)等于( 。
A.[-3,2)B.[-3,2]C.(-1,2)D.(-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知平面上不同兩點(diǎn)P(a,b),Q(3-b,3-a),線段PQ垂直平分線為直線l,則圓C:(x-2)2+(y-3)3=1關(guān)于l的對(duì)稱圓的方程x2+(y-1)2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.(1)求過(guò)直線l1:2x-3y+1=0和l2:4x+y+9=0的交點(diǎn),且平行于直線2x-y+7=0的直線l的方程.
(2)求過(guò)點(diǎn)(1,2),且在x軸與y軸上的截距相等的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知實(shí)數(shù)x,y滿足:x>0且x2-xy+2=0,則x+2y的最小值為(  )
A.4$\sqrt{3}$B.2$\sqrt{3}$C.4$\sqrt{5}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖,目標(biāo)函數(shù)z=kx-y的可行域?yàn)樗倪呅蜲EFG(含邊界),若點(diǎn)F($\frac{2}{3}$,$\frac{4}{5}$)是目標(biāo)函數(shù)的最優(yōu)解,則k的取值范圍是( 。
A.(-$\frac{12}{5}$,$\frac{4}{5}$)B.($\frac{3}{10},\frac{12}{5}$)C.[-$\frac{12}{5}$,-$\frac{3}{10}$]D.[-$\frac{3}{10}$,-$\frac{12}{5}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.我國(guó)2009年至2015年生活垃圾無(wú)害化處理量y(單位:億噸)的數(shù)據(jù)如下表:
年份2009201020112012201320142015
年份代號(hào)i1234567
年生活垃圾無(wú)害化處理量y0.71.11.42.22.63.03.7
(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,預(yù)測(cè)2017年我國(guó)生活垃圾無(wú)害化處理量.
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:$\widehat$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i-n\overline{t}\overline{y}}}{\sum_{i=1}^{n}{t}_{i}^{2}-n{\overline{t}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{t}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知α、β∈(0,π),且tanα、tanβ是方程x2-5x+6=0的兩根.
(1)求tan(α+β)的值;
(2)求cos(α-β)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案