設m為直線,α、β、γ為三個不同的平面,下列說法正確的是( 。
A、若m∥α,α⊥β,則m⊥β
B、若m?α,α∥β,則m∥β
C、若m⊥α,α⊥β,則m∥β
D、若α⊥β,α⊥γ,則β∥γ
考點:空間中直線與平面之間的位置關系,空間中直線與直線之間的位置關系
專題:空間位置關系與距離
分析:根據(jù)線面平行、面面平行、面面垂直等性質(zhì)定理和判定定理對選項分別分析選擇.
解答: 解:對于A,若m∥α,α⊥β,則m與β的位置關系不確定;故A錯誤;
對于B,若m?α,α∥β,根據(jù)面面平行的性質(zhì)定理可得m∥β;故B 正確;
對于C,若m⊥α,α⊥β,則m∥β或者m?β;故C錯誤;
對于D,若α⊥β,α⊥γ,則β與γ可能相交;故D錯誤;
故選B.
點評:本題考查了線面平行、面面平行、面面垂直等性質(zhì)定理和判定定理的運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,設區(qū)域D={(x,y)|0≤x≤2,-1≤y≤3},向區(qū)域D內(nèi)任投一點,記此點落在陰影區(qū)域M={(x,y)|0≤x≤2,-1≤y≤x2-1}的概率為p,則a=p是函數(shù)y=ax2+2x+1有兩個零點的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù) f(x)=3x+x-5,則函數(shù) f(x)的零點一定在區(qū)間( 。
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)為奇函數(shù),x>0時,f(x)=sin2x+cos2x,則x<0時f(x)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知|a|<1,|b|<1,求證:|
1-ab
a-b
|>1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tan(α+β)=1,tan(α-
π
3
)=
1
3
,則tan(β+
π
3
)的值為( 。
A、
2
3
B、
1
2
C、
3
4
D、
4
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線y=exlnx在x=1處的切線方程是(  )
A、y=2e(x-1)
B、y=ex-1
C、y=x-e
D、y=e(x-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A(3,-2,1),B(4,-5,3),則與向量
AB
平行的一個向量坐標為(  )
A、(
1
3
,1,1)
B、(-
1
3
,1,-1)
C、(
1
2
,-
3
2
,1)
D、(-
1
2
,
3
2
,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
x
-log2
1+x
1-x

(1)求f(x)的定義域;
(2)判斷并證明f(x)的奇偶性;
(3)求證:f(x)在(0,1)內(nèi)是減函數(shù),并求使關系式f(x)<f(
1
2
)
成立的實數(shù)x的取值范圍.

查看答案和解析>>

同步練習冊答案