13.解下列方程:
(1)|x-1|=1;
(2)|x2-1|=1.

分析 (1)|x-1|=1,化為x-1=±1,解出即可得出.
(2)|x2-1|=1,化為x2-1=±1,即x2=0或x2=2,解出即可得出.

解答 解:(1)|x-1|=1,∴x-1=±1,解得x=0或2,∴方程的解為:x=0或2.
(2)|x2-1|=1,∴x2-1=±1,化為x2=0或x2=2,解得x=0,x=$±2\sqrt{2}$,∴方程的解為:x=0或$±\sqrt{2}$.

點評 本題考查了絕對值方程的解法,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若圖所示的集合A={1,2,3},B={x∈Z|x2-6x+8≤0},則圖中陰影部分表示的集合為( 。
A.{1,2}B.{1,3}C.{1,4}D.{2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.(1)若函數(shù)y=f(x)滿足f(a+x)=f(a-x),則函數(shù)f(x)的圖象關(guān)于直線x=a對稱.
(2)若函數(shù)y=f(x)滿足f(a+x)=f(b-x),則函數(shù)f(x)的圖象關(guān)于直線x=$\frac{a+b}{2}$對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若${C}_{12}^{3}$=${C}_{12}^{x}$,則x=3或9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.某電信有如下規(guī)定,若郵件大小在1MB(含1MB)以內(nèi),郵箱免費使用,若郵件超過1MB,則超過部分按每1KB收取管理費0.02元,現(xiàn)小李付了管理費20.48元,他的郵件大小為(  )
A.500KBB.1MBC.2MBD.4MB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.作出函數(shù)y=2+sinx,x∈[0,2π]的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)α,β∈(0,π),sin(α+β)=$\frac{5}{13}$,tan$\frac{α}{2}$=$\frac{1}{2}$,則tanα=$\frac{4}{3}$,cosβ=-$\frac{16}{65}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若α終邊上一點的坐標(biāo)是P(-3,6),則角α是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}、{bn},Sn為數(shù)列{an}的前n項和,向量$\overrightarrow{x}$=(1,bn),$\overrightarrow{y}$=(an-1,Sn),$\overrightarrow{x}$∥$\overrightarrow{y}$.
(1)若bn=2,求數(shù)列{an}通項公式;
(2)若bn=$\frac{n}{2}$,a2=0.證明:數(shù)列{an}為等差數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案