(本題滿分14分

已知橢圓的離心率為,以原點(diǎn)為圓心,

橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.

⑴求橢圓C的方程;

⑵設(shè),、是橢圓上關(guān)于軸對(duì)稱的任意兩個(gè)不同的點(diǎn),連結(jié)交橢圓

于另一點(diǎn),求直線的斜率的取值范圍;

⑶在⑵的條件下,證明直線軸相交于定點(diǎn).

 

【答案】

;

;

⑶見解析

【解析】本題考查橢圓的幾何性質(zhì),考查橢圓的標(biāo)準(zhǔn)方程,解題的關(guān)鍵是確定幾何量之間的關(guān)系,利用直線與橢圓聯(lián)立,結(jié)合韋達(dá)定理求解

(1)根據(jù)橢圓的性質(zhì),離心率得到參數(shù)a,c的關(guān)系,然后利用線與圓相切得到參數(shù)b的值,進(jìn)而得到橢圓的方程。

(2)設(shè)出直線與橢圓的方程聯(lián)立方程組,結(jié)合韋達(dá)定理,和判別式大于零得到直線的斜率的范圍。

(3)表示直線ME的方程,以及結(jié)合點(diǎn)的坐標(biāo)的對(duì)稱關(guān)系,得到k的關(guān)系式,進(jìn)而得到直線軸相交于定點(diǎn)

解:⑴由題意知,

所以,即,

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012090810395376781056/SYS201209081040251252920836_DA.files/image010.png">,所以,

故橢圓的方程為.-----------4分

⑵由題意知直線的斜率存在,設(shè)直線的方程為  ①

聯(lián)立消去得:,

,

不合題意,

所以直線的斜率的取值范圍是.---8分

⑶設(shè)點(diǎn),則,

直線的方程為,

,得,

代入整理,得.     ②

由得①代入②整理,得

所以直線軸相交于定點(diǎn).         ----------------14分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分14分)已知是給定的實(shí)常數(shù),設(shè)函數(shù),,

的一個(gè)極大值點(diǎn).

    (Ⅰ)求的取值范圍;

(Ⅱ)設(shè)的3個(gè)極值點(diǎn),問是否存在實(shí)數(shù),可找到,使得

的某種排列(其中=)依次成等差數(shù)列?若存在,求所有的

及相應(yīng)的;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山東師大附中高三12月(第三次)模擬檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題

 (本題滿分14分)已知函數(shù)

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)如果當(dāng)時(shí),恒成立,求實(shí)數(shù)的范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省高三第二學(xué)期第一次統(tǒng)考文科數(shù)學(xué) 題型:解答題

(本題滿分14分) 已知正四棱錐P-ABCD中,底面是邊長(zhǎng)為2 的正方形,高為.M為線段PC的中點(diǎn).

(Ⅰ) 求證:PA∥平面MDB;

(Ⅱ) N為AP的中點(diǎn),求CN與平面MBD所成角的正切值.

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省高三上學(xué)期期中考試數(shù)學(xué)文卷 題型:解答題

(本題滿分14分)已知函數(shù)的圖像過點(diǎn)(1,3),且對(duì)任意實(shí)數(shù)都成立,函數(shù)的圖像關(guān)于原點(diǎn)對(duì)稱.

(Ⅰ)求的解析式;

(Ⅱ)若在[-1,1]上是增函數(shù),求實(shí)數(shù)λ的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆浙江省高三調(diào)研測(cè)試文科數(shù)學(xué)試卷 題型:解答題

(本題滿分14分) 已知正四棱錐PABCD中,底面是邊長(zhǎng)為2 的正方形,高為M為線段PC的中點(diǎn).

(Ⅰ) 求證:PA∥平面MDB;

(Ⅱ) NAP的中點(diǎn),求CN與平面MBD所成角的正切值.

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案