在拋物線y2=2px上,橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5,則p的值為(   )
A.B.1C.4D.2
D

試題分析:根據(jù)拋物線的定義,在拋物線y2=2px上,橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5,那么可知5=4+,p=2,故可知選D.
點(diǎn)評(píng):解決該試題的關(guān)鍵是對(duì)于拋物線定義的運(yùn)用,結(jié)合曲線上點(diǎn)到焦點(diǎn)的距離等于其到準(zhǔn)線的距離,屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線的焦點(diǎn)為F,傾斜角為的直線過(guò)點(diǎn)F且與拋物線的一個(gè)交點(diǎn)為A,,則拋物線的方程為
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓的中心在坐標(biāo)原點(diǎn)、對(duì)稱軸為坐標(biāo)軸,且拋物線的焦點(diǎn)是它的一個(gè)焦點(diǎn),又點(diǎn)在該橢圓上.
(1)求橢圓的方程;
(2)若斜率為直線與橢圓交于不同的兩點(diǎn),當(dāng)面積的最大值時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

從雙曲線的左焦點(diǎn)F引圓的切線FP交雙曲線右支于點(diǎn)P,T為切點(diǎn),M為線段FP的中點(diǎn),O為坐標(biāo)原點(diǎn),則| MO | – | MT | =        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線的焦點(diǎn)到雙曲線的漸近線的距離為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)
已知點(diǎn),,△的周長(zhǎng)為6.
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)的直線與曲線相交于不同的兩點(diǎn),.若點(diǎn)軸上,且,求點(diǎn)的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
設(shè)雙曲線的方程為,、為其左、右兩個(gè)頂點(diǎn),是雙曲線 上的任意一點(diǎn),作,,垂足分別為、交于點(diǎn).
(1)求點(diǎn)的軌跡方程;
(2)設(shè)的離心率分別為、,當(dāng)時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知a,b為正常數(shù),F(xiàn)1,F(xiàn)2是兩個(gè)定點(diǎn),且|F1F2|=2a(a是正常數(shù)),動(dòng)點(diǎn)P滿足|PF1|+|PF2|=a2+1,則動(dòng)點(diǎn)P的軌跡是(     )
A.橢圓B.線段C.橢圓或線段D.直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

一雙曲線與橢圓有共同焦點(diǎn),并且與其中一個(gè)交點(diǎn)的縱坐標(biāo)為4,則這個(gè)雙曲線的方程為_(kāi)____。

查看答案和解析>>

同步練習(xí)冊(cè)答案