已知圓(x-3)2+y2=4和直線y=mx的交點分別為P、Q兩點,O為坐標原點,則|
OP
|?|
OQ
|=( 。
A、1+m2
B、
5
1+m2
C、5
D、10
分析:如圖所示,過點O作⊙C的切線OM,切點為M.連接CM,利用切線的性質可得CM⊥OM.利用勾股定理可得|OM|2=|OC|2-|CM|2.根據(jù)切割線定理可得:|
OP
|•|
OQ
|
=|
OM
|2
即可得出..
解答:解:如圖所示,
過點O作⊙C的切線OM,切點為M.精英家教網
連接CM,則CM⊥OM.
則|OM|2=|OC|2-|CM|2=32-22=5.
根據(jù)切割線定理可得:|
OP
|•|
OQ
|
=|
OM
|2
=5.
故選:5.
點評:本題考查了圓的切線的性質、切割線定理、勾股定理,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知圓(x-3)2+(y-4)2=16,直線l1:kx-y-k=0.
(1)若l1與圓交于兩個不同點P,Q,求實數(shù)k的取值范圍;
(2)若PQ的中點為M,A(1,0),且l1與l2:x+2y+4=0的交點為N,求證:|AM|•|AN|為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓(x-3)2+(y+4)2=4和直線y=kx相交于P,Q兩點,則
OP
OQ
的值為(O為坐標原點)( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓(x-3)2+y2=4和過原點的直線y=kx的交點為P、Q,則|OP|•|OQ|的值為
5
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓(x-3)2+(y-4)2=4和直線kx-y-4k+3=0,當圓被直線截得的弦最短時,此時k等于
1
1

查看答案和解析>>

同步練習冊答案