分析 ①利用抽象表達(dá)式,將x替換為x+1,即可由周期定義判斷①的正誤;
②利用函數(shù)的周期性,函數(shù)在[0,1]和[2,3]上的單調(diào)性相同;
③先求函數(shù)在x∈[0,1]時(shí)的值域,再利用對稱性和周期性即可求出函數(shù)的值域;
④設(shè)x∈[3,4],則4-x∈[0,1],f(4-x)=($\frac{1}{2}$)x-3=f(-x)=f(x).
解答 解:①∵對任意的x∈R恒有f(x+1)=-f(x),
∴f(x+2)=-f(x+1)=f(x),即2是f(x)的周期,①正確
②∵函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x∈[0,1]時(shí),f(x)=($\frac{1}{2}$)1-x,
∴函數(shù)f(x)在(0,1)上是增函數(shù),函數(shù)f(x)在(1,2)上是減函數(shù),在(2,3)上是增函數(shù),故②正確;
函數(shù)f(x)的最大值是f(1)=1,最小值為f(0)=$\frac{1}{2}$,故③不正確;
設(shè)x∈[3,4],則4-x∈[0,1],f(4-x)=($\frac{1}{2}$)x-3=f(-x)=f(x),故④正確.
故答案為:①②④.
點(diǎn)評(píng) 本題綜合考查了函數(shù)的周期性定義及其證明,利用函數(shù)的對稱性和周期性判斷函數(shù)的最值、單調(diào)性、對稱軸的方法,轉(zhuǎn)化化歸的思想方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 5 | C. | 8 | D. | 13 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若a⊥b,a⊥c,則b∥c | B. | 若a⊥α,b⊥β,a∥b,則α∥β | ||
C. | 若α⊥β,α⊥γ,則β∥γ | D. | 若a∥α,b∥β,a⊥b,則α⊥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1) | B. | $[\sqrt{3}-1,1)$ | C. | $[\sqrt{3}-1,1]$ | D. | $[\sqrt{3}-1,+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com