已知周長為40的△ABC的頂點B、C在橢圓
x2
a2
+
y2
b2
=1上,頂點A(6,0)是橢圓的一個焦點,且橢圓的另外一個焦點在邊BC上,求橢圓的方程.
考點:橢圓的標準方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:由已知得
c=6
4a=40
a2=b2+c2
,由此能求出橢圓的方程.
解答: 解:由已知得
c=6
4a=40
a2=b2+c2
,
解得a=10,b=8,
∴橢圓的方程為
x2
100
+
y2
64
=1
點評:本題考查橢圓方程的求法,是基礎題,解題時要認真審題,注意橢圓性質(zhì)的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,三個內(nèi)角A,B,C的對邊分別為a,b,c,若a=2
3
,c=2,A=120°,S△ABC=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在R上的周期為3的函數(shù),當x∈[0,3]時,f(x)=|x2-2x+
1
2
|.
(1)作出函數(shù)在區(qū)間[0,3)上的圖象,并寫出它的值域;
(2)若函數(shù)y=f(x)-2m+
1
2
在區(qū)間[-3,4]上有10個零點,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在△ABC中,DE∥BC,EF∥CD,且AB=2,AD=
2
,則AF=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+f′(2)(lnx-x),則f′(1)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,O為△ABC的外心,E為三角形內(nèi)一點,滿足
OE
=
OA
+
OB
+
OC
.求證:
AE
BC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2x-a
2x+1
為奇函數(shù)
(Ⅰ) 求函數(shù)f(x)的解析式;
(Ⅱ) 若f(x)=-
3
5
,求x的值;
(Ⅲ)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果長度分別為5,3,x的三條線段能組成一個銳角三角形,那么x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合U={-1,0,1,2,3},∁UA={0,1,2},則集合A=( 。
A、{0,1,2}
B、{-1,0,1,2,3}
C、{-1,3}
D、{1,2,3}

查看答案和解析>>

同步練習冊答案