若點A(2,3)在不等式3x-2y+m≥0所表示的平面區(qū)域內(nèi),則m的取值范圍為
 
考點:二元一次不等式(組)與平面區(qū)域
專題:不等式的解法及應用
分析:根據(jù)點與二元一次不等式之間的關(guān)系,即可得到結(jié)論.
解答: 解:若點A(2,3)在不等式3x-2y+m≥0所表示的平面區(qū)域內(nèi),
則點A的坐標滿足不等式,
即3×2-2×3+m≥0,
則m≥0,
故答案為:m≥0.
點評:本題主要考查二元一次不等式表示平面區(qū)域,利用點的坐標和二元一次不等式之間的關(guān)系是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知{an}的通項公式an=
1
n(n+1)
(n∈N*),則{an}的前n項和Sn=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)a1=5,an+1=2an+3(n≥1),則{an}的通項公式為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2x-1,x≤0
1
x
,x>0
,若f(a)=-
1
2
,則a=
 
;函數(shù)f(x)的值域是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出定義:若函數(shù)f(x)在D上可導,即f′(x)存在,且導函數(shù)f′(x)在D上也可導,則稱f(x)在D上存在二階導函數(shù),記f″(x)=(f′(x))′,若f″(x)<0在D上恒成立,則稱f(x)在D上為凸函數(shù).以下四個函數(shù):
①f(x)=x2+2x;
②f(x)=sinx+cosx;
③f(x)=lnx-x;
④f(x)=-xex
在(0,
π
2
)上是凸函數(shù)的是
 
.(填序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線y=kx+1與曲線y=lnx相切,則k的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法:
①“?x∈R,2x>3“的否定是“?x∈R,2x≤3”.
②函數(shù)y=sin(2x+
π
4
)sin(
π
4
-2x)的最小正周期為π.
③命題“函數(shù)f(x)在x=x0處有極值則f′(x)=0”的否命題是真命題.
④f(x)是(-∞,0)∪(0,+∞)上的奇函數(shù),當x>0時的解析式是f(x)=2x,則當x<0時的解析式是f(x)=-2-x
其中正確的說法是
 
.(填序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:?x∈R,x2-3x+3≤0,則( 。
A、¬p:?x∈R,x2-3x+3>0,且¬p為真命題
B、¬p:?x∈R,x2-3x+3>0,且¬p為假命題
C、¬p:?x∈R,x2-3x+3>0,且¬p為真命題
D、¬p:?x∈R,x2-3x+3>0,且¬p為假命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)偶函數(shù)f(x)滿足f(x)=x3+8(x≤0),則{x|f(x-2)<0}=(  )
A、{x|-2<x<2}
B、{x|x<-2或x>2}
C、{x|0<x<4}
D、{x|x<0或x>4}

查看答案和解析>>

同步練習冊答案