2.若角α的終邊過(guò)點(diǎn)P(2cos120°,$\sqrt{2}$sin225°),則cosα=(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$-\frac{{\sqrt{2}}}{2}$

分析 先利用誘導(dǎo)公式,確定角α的終邊過(guò)點(diǎn)P(-1,-1),再求出cosα.

解答 解:∵cos120°=-cos60°=-$\frac{1}{2}$,sin225°=sin(180°+45°)=-sin45°=-$\frac{\sqrt{2}}{2}$,
∴角α的終邊過(guò)點(diǎn)P(-1,-1),
∴cosα=-$\frac{\sqrt{2}}{2}$.
故選:D.

點(diǎn)評(píng) 本題考查誘導(dǎo)公式,任意角的三角函數(shù)的定義,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.下列說(shuō)法錯(cuò)誤的是( 。
A.在△ABC中,a>b是sinA>sinB的充要條件
B.命題:“在銳角△ABC中,sinA>cosB”為真命題
C.若p:?x≥0,x2-x+1>0,則¬p:?x<0,x2-x+1≤0
D.已知命題p:?φ∈R,使f(x)=sin(x+φ)為偶函數(shù);命題q:?x∈R,cos2x+4sinx-3<0,則“p∧(¬q)”為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,四棱錐P-ABCD的底面ABCD是菱形,側(cè)棱PD⊥底面ABCD,∠BCD=60°.
(I)若點(diǎn)F,E分別在線段AP,BC上,AF=2FP,BE=2EC.求證:EF∥平面PDC;
(Ⅱ)問(wèn)在線段AB上,是否存在點(diǎn)Q,使得平面PAB⊥平面PDQ,若存在,求出點(diǎn)Q的位置;否則,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知F1,F(xiàn)2分別是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點(diǎn),P為上雙曲線右支上一點(diǎn),線段F2P的垂直平分線過(guò)坐標(biāo)原點(diǎn)O,若雙曲線的離心率為$\sqrt{5}$,則$\frac{|P{F}_{1}|}{|P{F}_{2}|}$=( 。
A.$\sqrt{2}$B.2C.$\sqrt{5}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.用反證法證明:在三角形ABC中,若AB=AC,則∠B一定是銳角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.復(fù)數(shù)z1=i,z2=1+i,那么復(fù)數(shù)z1•z2在復(fù)平面上的對(duì)應(yīng)點(diǎn)所在象限是( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在等比數(shù)列{an}中,若a3,a7是方程x2-5x+2=0的兩根,則a5的值是(  )
A.$\sqrt{2}$B.±$\sqrt{2}$C.-$\sqrt{2}$D.±2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.命題“存在x∈[0,2],x2-x-a≤0為真命題”的一個(gè)充分不必要條件是( 。
A.a≤0B.a≥-1C.a≥-$\frac{1}{4}$D.a≥3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在△ABC中,∠A=60°,a=$\sqrt{15}$,b=4,那么滿足條件的△ABC( 。
A.有一個(gè)解B.有兩個(gè)解C.無(wú)解D.不確定

查看答案和解析>>

同步練習(xí)冊(cè)答案