15.如圖,已知F1,F(xiàn)2是雙曲線$C:\frac{x^2}{2}-\frac{y^2}{2}=1$的左,右焦點,點A在雙曲線的右支上,線段AF1與雙曲線左支相交于點B,△F2AB的內(nèi)切圓與BF2相切于點E,若|AF2|=2|BF1|,則|BE|=$2\sqrt{2}$.

分析 設(shè)|BF1|=m,則|AF2|=2m,由雙曲線的定義可得|AF1|=2a+2m,|BF2|=m+2a,|EF2|=m+2a-|BE|,再由內(nèi)切圓的性質(zhì),求得a解得|BE|=2a=2$\sqrt{2}$.

解答 解:設(shè)|BF1|=m,則|AF2|=2m,
由雙曲線的定義有|AF1|=|AF2|+2a=2a+2m,
|BF2|=m+2a,|EF2|=m+2a-|BE|
∵|AB|=|AF2|-|EF2|+|BE|=2m-(m+2a-|BE|)+|BE|
∴|AF1|=∵|AB|+|BF1|
即有2a+2m=2m-(m+2a-|BE|)+|BE|+m,
解得|BE|=2a=2$\sqrt{2}$.
故答案為:2$\sqrt{2}$.

點評 本題考查雙曲線的定義、方程和性質(zhì),考查內(nèi)切圓的性質(zhì),考查定義法,屬于中檔題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=sinωx+$\sqrt{3}$cosωx+1的最小正周期為π,當(dāng)x∈[m,n]時,f(x)至少有12個零點,則n-m的最小值為( 。
A.12πB.$\frac{7π}{3}$C.D.$\frac{16π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.我們把三個集合中,通過兩次連線后能夠有關(guān)系的兩個數(shù)字的關(guān)系稱為”鼠標(biāo)關(guān)系”,如圖1,可稱a與q,b與q,c與q都為”鼠標(biāo)關(guān)系”集合A={a,b,c,d},通過集合 B={1,2,3} 與集合C={m,n}最多能夠產(chǎn)生24條”鼠標(biāo)關(guān)系”,(只要有一條連線不同則”鼠標(biāo)關(guān)系”不同)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在復(fù)平面內(nèi),復(fù)數(shù)$\frac{2-i}{1-i}$(i是虛數(shù)單位)對應(yīng)的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)等差數(shù)列{an}的前n項和為Sn,若2a3=3+a1,則S9的值為(  )
A.15B.27C.30D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列命題中正確的是( 。
A.若p∨q為真命題,則p∧q為真命題
B.“x=5”是“x2-4x-5=0”的充分不必要條件
C.命題“若x<-1,則x2-2x-3>0”的否命題為:“若x<-1,則x2-2x-3≤0”
D.已知命題p:?x∈R,x2+x-1<0,則¬p:?x∈R,x2+x-1≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.一個幾何體的三視圖如圖所示,則此幾何體的體積為( 。
A.16B.36C.48D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在四棱錐P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB,E,F(xiàn),H分別是棱PA,PB,AD的中點,且過E,F(xiàn),H的平面截四棱錐P-ABCD所得截面面積為$\frac{{3\sqrt{2}}}{2}$,則四棱錐P-ABCD的體積為(  )
A.$\frac{8}{3}$B.8C.$8\sqrt{3}$D.$24\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知定圓M:(x-3)2+y2=16和圓M所在平面內(nèi)一定點A,點P是圓M上一動點,線段PA的垂直平分線l交直線PM于點Q.
(Ⅰ)討論Q點的軌跡可能是下面的情形中的哪幾種:①橢圓;②雙曲線;③拋物線;④圓;⑤直線;⑥一個點.
(Ⅱ)若定點A(5,0),試求△QMA的面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案