3.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線及粗虛線畫出的是某多面體的三視圖,則該多面體外接球的表面積為( 。
A.B.$\frac{25}{2}$πC.12πD.$\frac{41}{4}$π

分析 根據(jù)三視圖得出空間幾何體是鑲嵌在正方體中的四棱錐O-ABCD,正方體的棱長為2,A,D為棱的中點,利用球的幾何性質(zhì)求解即可.

解答 解:根據(jù)三視圖得出:該幾何體是鑲嵌在正方體中的四棱錐O-ABCD,正方體的棱長為2,A,D為棱的中點



根據(jù)幾何體可以判斷:球心應(yīng)該在過A,D的平行于底面的中截面上,
設(shè)球心到截面BCO的距離為x,則到AD的距離為:2-x,
∴R2=x2+($\sqrt{2}$)2,R2=12+(2-x)2,
解得出:x=$\frac{3}{4}$,R=$\frac{\sqrt{41}}{4}$,
該多面體外接球的表面積為:4πR2=$\frac{41}{4}$π,
故選:D.

點評 本題綜合考查了空間幾何體的性質(zhì),學(xué)生的空間思維能力,構(gòu)造思想,關(guān)鍵是鑲嵌在常見的幾何體中解決.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖所示,四邊形ABCD是菱形,O是AC與BD的交點,SA⊥平面ABCD.
(Ⅰ)求證:平面SAC⊥平面SBD;
(Ⅱ)若∠DAB=120°,DS⊥BS,AB=2,求二面角S-BC-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.三階行列式$|{\begin{array}{l}1&{-3}&5\\ 4&0&0\\{-1}&2&1\end{array}}|$中,元素5的代數(shù)余子式的值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.若集合A={x|x≥1},B={x|x2≤4},則A∩B={x|1≤x≤2}..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.(實驗班做)四面體的頂點和各棱的中點共10個點,在其中取4個點,則這四個點不共面的概率為( 。
A.$\frac{5}{7}$B.$\frac{7}{10}$C.$\frac{47}{70}$D.$\frac{24}{35}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列函數(shù)中,定義域為R的是( 。
A.y=$-\frac{{\sqrt{5}}}{e^x}$B.y=$\sqrt{x+1}$C.y=lnxD.y=x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(1)已知向量$\overrightarrow a$,$\overrightarrow b$滿足$|{\overrightarrow a}|$=$|{\overrightarrow b}|$=3,且$\overrightarrow a$與$\overrightarrow b$的夾角為120°,求$|{\overrightarrow a+\overrightarrow b}|$,$|{2\overrightarrow a-\overrightarrow b}|$;
(2)已知非零向量$\overrightarrow a$,$\overrightarrow b$滿足$\overrightarrow a+3\overrightarrow b$與$7\overrightarrow a-5\overrightarrow b$互相垂直,$\overrightarrow a-4\overrightarrow b$與$\overrightarrow{7a}-2\overrightarrow b$互相垂直,求$\overrightarrow a$與$\overrightarrow b$的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在半徑為1的球面上有不共面的四個點A,B,C,D且AB=CD=x,BC=DA=y,CA=BD=z,則x2+y2+z2等于( 。
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=alnx+$\frac{1}{2}b{x^2}$+x,(a,b∈R)
(Ⅰ)若函數(shù)f(x)在x1=1,x2=2處取得極值,求a,b的值,并說明分別取得的是極大值還是極小值;
(Ⅱ)若函數(shù)f(x)在(1,f(1))處的切線的斜率為1,存在x∈[1,e],使得f(x)-x≤(a+2)(-$\frac{1}{2}$x2+x)成立,求實數(shù)a的取值范圍;
(Ⅲ) 若h(x)+x=f(x)+(1-$\frac{2}$)x2,求h(x)在[1,e]上的最小值及相應(yīng)的x值.

查看答案和解析>>

同步練習(xí)冊答案