【題目】某研究性學(xué)習(xí)小組對(duì)春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:
日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
溫差(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 25 | 30 | 26 | 16 |
(1)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均小于25”的概率;
(2)請(qǐng)根據(jù)3月2日至3月4日的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(2)所得的線性回歸方程是否可靠?
(參考公式:回歸直線方程為,其中, )
【答案】(Ⅰ);(Ⅱ) ;(Ⅲ)見(jiàn)解析.
【解析】試題分析:(1)分別求出5天中選出2天的基本事件個(gè)數(shù)和所選2天發(fā)芽數(shù)均不小于25的基本事件個(gè)數(shù),使用古典概型的概率計(jì)算公式求出概率;
(2)根據(jù)回歸系數(shù)公式計(jì)算回歸系數(shù),得出回歸方程;
(3)利用所得的回歸方程檢驗(yàn)1日和5日的數(shù)據(jù)誤差是否不超過(guò)2.
試題解析:
(Ⅰ)構(gòu)成的基本事件有:
, , ,共有10個(gè)
其中,“均小于25”的有1個(gè),其概率為
(Ⅱ)∵,
∴
于是,
故所求線性回歸方程為,
(Ⅲ)由(2)知,
當(dāng)時(shí), ;當(dāng)時(shí),
與檢驗(yàn)數(shù)據(jù)的誤差均為1,滿足題意.
故認(rèn)為得到的線性回歸方程是可靠的.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(I)求函數(shù)的單調(diào)區(qū)間;
(II)若在上恒成立,求實(shí)數(shù)的取值范圍;
(III)在(II)的條件下,對(duì)任意的,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知長(zhǎng)方形, , ,以的中點(diǎn)為原點(diǎn),建立如圖所示的平面直角坐標(biāo)系.
(1)求以為焦點(diǎn),且過(guò)兩點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,過(guò)點(diǎn)作直線與橢圓交于不同的兩點(diǎn),設(shè),點(diǎn)坐標(biāo)為,若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(Ⅰ)求函數(shù)的極值;
(Ⅱ)當(dāng)時(shí),若存在實(shí)數(shù)使得不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地高中年級(jí)學(xué)生某次身體素質(zhì)體能測(cè)試的原始成績(jī)采用百分制,已知這些學(xué)生的原始成績(jī)均分布在內(nèi),發(fā)布成績(jī)使用等級(jí)制,各等級(jí)劃分標(biāo)準(zhǔn)見(jiàn)下表,并規(guī)定: 三級(jí)為合格, 級(jí)為不合格
為了了解該地高中年級(jí)學(xué)生身體素質(zhì)情況,從中抽取了名學(xué)生的原始成績(jī)作為樣本進(jìn)行統(tǒng)計(jì),按照分組作出頻率分布直方圖如圖所示,樣本中分?jǐn)?shù)在分及以上的所有數(shù)據(jù)的莖葉圖如圖所示.
(Ⅰ) 求及頻率分布直方圖中的值;
(Ⅱ) 根據(jù)統(tǒng)計(jì)思想方法,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,若在該地高中學(xué)生中任選人,求至少有人成績(jī)是合格等級(jí)的概率;
(Ⅲ)上述容量為的樣本中,從兩個(gè)等級(jí)的學(xué)生中隨機(jī)抽取了名學(xué)生進(jìn)行調(diào)研,記為所抽取的名學(xué)生中成績(jī)?yōu)?/span>等級(jí)的人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線(θ為參數(shù)),將上的所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長(zhǎng)為原來(lái)的和2倍后得到曲線,以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,已知直線.
(1)試寫出曲線的極坐標(biāo)方程與曲線的參數(shù)方程;
(2)在曲線上求一點(diǎn),使點(diǎn)到直線的距離最小,并求此最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(A)在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的參數(shù)方程為 (為參數(shù)), 是曲線上的動(dòng)點(diǎn), 為線段的中點(diǎn),設(shè)點(diǎn)的軌跡為曲線.
(1)求的坐標(biāo)方程;
(2)若射線與曲線異于極點(diǎn)的交點(diǎn)為,與曲線異于極點(diǎn)的交點(diǎn)為,求.
(B)設(shè)函數(shù).
(1)當(dāng)時(shí),求不等式的解集;
(2)對(duì)任意, 不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了調(diào)查某生產(chǎn)線上質(zhì)量監(jiān)督員甲對(duì)產(chǎn)品質(zhì)量好壞有無(wú)影響,現(xiàn)統(tǒng)計(jì)數(shù)據(jù)如下:質(zhì)量監(jiān)督員甲在生產(chǎn)現(xiàn)場(chǎng)時(shí),990件產(chǎn)品中合格品有982件,次品有8件;甲不在生產(chǎn)現(xiàn)場(chǎng)時(shí),510件產(chǎn)品中合格品有493件,次品有17件,試分別用列聯(lián)表、獨(dú)立性檢驗(yàn)的方法分析監(jiān)督員甲是否在生產(chǎn)現(xiàn)場(chǎng)對(duì)產(chǎn)品質(zhì)量好壞有無(wú)影響?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的通項(xiàng)公式是.
(1)判斷是否是數(shù)列中的項(xiàng);
(2)試判斷數(shù)列中的各項(xiàng)是否都在區(qū)間內(nèi);
(3)試判斷在區(qū)間內(nèi)是否有無(wú)窮數(shù)列中的項(xiàng)?若有,是第幾項(xiàng)?若沒(méi)有,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com