19.已知圓O的半徑為定長(zhǎng)為r,A是圓O所在平面上的一個(gè)定點(diǎn),P是圓上任意一點(diǎn),線段AP的垂直平分線L和直線OP相交于點(diǎn)M,當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),點(diǎn)M的軌跡可能是①點(diǎn);②直線;③圓;④橢圓;⑤雙曲線;⑥拋物線.其中正確的是( 。
A.④⑤B.①③④⑤C.①②③④⑤D.①②③④⑤⑥

分析 由已知結(jié)合線段的垂直平分線的性質(zhì),分類討論可得點(diǎn)M的軌跡.

解答 解:∵A為⊙O內(nèi)一定點(diǎn),P為⊙O上一動(dòng)點(diǎn),
線段AP的垂直平分線交半徑OP于點(diǎn)M,
∴|MA|=|MP|,|MA|+|MO|=|MP|+|MO|=|OP|=r,
即動(dòng)點(diǎn)M到兩定點(diǎn)O、A的距離和為定值,
根據(jù)橢圓的定義,可知點(diǎn)M的軌跡是:以O(shè),A為焦點(diǎn)的橢圓.
A為圓心時(shí),點(diǎn)M的軌跡是圓;
∵A為⊙O外一定點(diǎn),P為⊙O上一動(dòng)點(diǎn)
線段AP的垂直平分線交直線OP于點(diǎn)M,
∴|MA|=|MP|,|MA|-|MO|=|MP|-|MO|=|OP|=r,
即動(dòng)點(diǎn)M到兩定點(diǎn)O、A的距離差為定值,
根據(jù)雙曲線的定義,可知點(diǎn)M的軌跡是:以O(shè),A為焦點(diǎn),OA為實(shí)軸長(zhǎng)的雙曲線
A為圓上的點(diǎn)時(shí),點(diǎn)M的軌跡是圓心O.
故選:B.

點(diǎn)評(píng) 本題考查了橢圓、雙曲線的定義及方程,考查了數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知f(x)=$\left\{\begin{array}{l}{2x(x>0)}\\{f(x+1)(x≤0)}\end{array}\right.$,則f(-$\frac{4}{3}$)=( 。
A.$\frac{4}{3}$B.-$\frac{4}{3}$C.-$\frac{8}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$是平面內(nèi)的非零向量,且$\overrightarrow{a}$,$\overrightarrow$不共線,則關(guān)于x的方程$\overrightarrow{a}$x2+$\overrightarrow$x+$\overrightarrow{c}$=0的解的情況是( 。
A.至少有一個(gè)實(shí)數(shù)解B.至多有一個(gè)實(shí)數(shù)解
C.至多有兩個(gè)實(shí)數(shù)解D.可能有無(wú)數(shù)個(gè)實(shí)數(shù)解

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.π為圓周率,e=2.71828…為自然對(duì)數(shù)的底數(shù).根據(jù)函數(shù)f(x)=$\frac{lnx}{x}$的單調(diào)性可得π3,3π,πe,eπ這四個(gè)數(shù)中的最大數(shù)為(  )
A.eπB.πeC.3πD.π3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.cos$\frac{11π}{6}$的值是( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.今天是星期日,再過(guò)233天是( 。
A.星期一B.星期二C.星期五D.星期六

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,若a、b、c成等差數(shù)列,且2a=3c,則cosB=$\frac{9}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.從某大學(xué)隨機(jī)抽取10名大學(xué)生,調(diào)查其家庭月收入與其每月上學(xué)的開(kāi)支情況,獲得第i個(gè)家庭的月收入xi(單位:千元)與其每月上學(xué)的開(kāi)支yi(單位:千元)的數(shù)據(jù)資料,算得:
$\sum_{i=1}^{10}$xi=80,$\sum_{i=1}^{10}$yi=20,$\sum_{i=1}^{10}$xiyi=184,$\sum_{i=1}^{10}$x${\;}_{i}^{2}$=720.
(1)求其每月上學(xué)的開(kāi)支y對(duì)月收入x的線性回歸方程$\widehat{y}$=bx+a;
(2)若某學(xué)生家庭月收入為7千元,預(yù)測(cè)該家庭每月支付其上學(xué)的費(fèi)用,
附:線性回歸方程$\widehat{y}$=bx+a中b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,a=$\widehat{y}$-b$\overline{x}$,其$\overline{x}$,$\overline{y}$為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.投籃測(cè)試中,每人投3次,至少投中2次才能通過(guò)測(cè)試,已知某同學(xué)每次投籃投中的概率為0.7,且各次投籃是否投中相互獨(dú)立,則該同學(xué)通過(guò)測(cè)試的概率為( 。
A.0.784B.0.648C.0.343D.0.441

查看答案和解析>>

同步練習(xí)冊(cè)答案