8.若0<a<2,則$\frac{1}{a}$的取值范圍($\frac{1}{2}$,+∞).

分析 構(gòu)造關(guān)于a的函數(shù),則y=$\frac{1}{a}$在(0,2)上為減函數(shù),根據(jù)函數(shù)的單調(diào)性即可求出a的范圍.

解答 解:∵y=$\frac{1}{a}$在(0,2)上為減函數(shù),
∴$\frac{1}{a}$的范圍為($\frac{1}{2}$,+∞),
故答案為:($\frac{1}{2}$,+∞)

點(diǎn)評(píng) 本題考查了冪函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.一個(gè)圓錐的正(主)視圖及其尺寸如圖所示,則該圓錐的側(cè)面積是( 。
A.$\frac{15}{2}π$B.12πC.15πD.24π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2sinθ,θ∈[0,2π).
(1)求曲線C的直角坐標(biāo)方程;
(2)若點(diǎn)D在曲線C上,求它到直線l:$\left\{\begin{array}{l}{x=\sqrt{3}t+\sqrt{3}}\\{y=-3t+2}\end{array}\right.$(t為參數(shù),t∈R)的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=2x2-ax+lnx在其定義域上不單調(diào),則實(shí)數(shù)a的取值范圍是(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,⊙O和⊙O′相交于A,B兩點(diǎn),過A作兩圓的切線分別交兩圓于C,D兩點(diǎn),連結(jié)DB并延長(zhǎng)交⊙O于點(diǎn)E,已知AC=BD=3.
(Ⅰ)求AB•AD的值;
(Ⅱ)求線段AE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若a>b,c>d,則不等式一定成立的是( 。
A.a-c>b-dB.a+c>b+dC.ac>bdD.|a|>|b|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)函數(shù)f(x)=$\frac{2}{x}$-2+2alnx.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)在區(qū)間[$\frac{1}{2}$,2]上的最值;
(2)若f(x)>-2恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在數(shù)列{an}中,a1=3,an=$\sqrt{{a}_{n-1}+2}$.
(Ⅰ)求a2,a3;
(Ⅱ)求證:數(shù)列{an}單調(diào)遞減;
(Ⅲ)求證:|an-2|<$\frac{1}{4}$|an-1-2|(n=2,3,…).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如果ξ~B(n,p),其中0<p<1,那么使P(ξ=k)取最大值的k 值( 。
A.有且只有一個(gè)B.有且只有兩個(gè)
C.不一定有D.當(dāng)(n+1)p為整數(shù)時(shí)有兩個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案