7.若函數(shù)$f(\sqrt{x}-1)=x+\sqrt{x}$,則f(x)=x2+3x+2(x≥-1).

分析 利用換元法,令t=$\sqrt{x}-1$(-1≤t),$\sqrt{x}=t+1,x=(t+1)^{2}$,帶入化解原函數(shù)即可.

解答 解:由題意:函數(shù)$f(\sqrt{x}-1)=x+\sqrt{x}$,
令t=$\sqrt{x}-1$(t≥-1),$\sqrt{x}=t+1,x=(t+1)^{2}$,
則有:f(t)=(t+1)2+t+1
=t2+3t+2,
∴f(x)=x2+3x+2(x≥-1),
故答案為:x2+3x+2(x≥-1).

點(diǎn)評(píng) 本題考查了函數(shù)解析式的求法,利用了換元法,屬于基礎(chǔ)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知x,y∈N*且滿(mǎn)足約束條件$\left\{\begin{array}{l}x-y<1\\ 2x-y>2\\ x<5\end{array}\right.$,則x+y的最小值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知集合A={x|y=$\sqrt{{x}^{2}-2x-3}$,B={x|$\frac{x-2}{x+2}$≤0,則A∩B=( 。
A.(-2,-1]B.[-2,-1]C.[2,3]D.(-2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=ln(x+1)-x.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若k∈Z,且f(x-1)+x>k(1-$\frac{3}{x}$)對(duì)任意x>1恒成立,求k的最大值;
(Ⅲ)對(duì)于在(0,1)中的任意一個(gè)常數(shù)a,是否存在正數(shù)x0,使得e${\;}^{f({x}_{0})}$<1-$\frac{a}{2}$x${\;}_{0}^{2}$成立?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知A,B均為全集U={1,2,3,4,5,6}的子集,且A∩B={3},(∁UB)∩A={1},(∁UA)∩(∁UB)={2,4},則B∩(∁UA)=( 。
A.{1}B.{3,4}C.{5,6}D.{3,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知直線(xiàn)l:$\left\{{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{{\sqrt{3}}}{2}t}\end{array}}$(t為參數(shù)),曲線(xiàn)C1:$\left\{{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}}$(θ為參數(shù)).
(1)設(shè)l與C1相交于A(yíng),B兩點(diǎn),求|AB|;
(2)若把曲線(xiàn)C1上各點(diǎn)的橫坐標(biāo)壓縮為原來(lái)的$\frac{1}{2}$倍,縱坐標(biāo)壓縮為原來(lái)的$\frac{{\sqrt{3}}}{2}$倍,得到曲線(xiàn)C2,設(shè)點(diǎn)P是曲線(xiàn)C2上的一個(gè)動(dòng)點(diǎn),求它到直線(xiàn)l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.某租賃公司擁有汽車(chē)100輛,當(dāng)每輛車(chē)的月租金為3000元時(shí),可全部租出,當(dāng)每輛車(chē)的月租金每增加50元時(shí),未租出的車(chē)將會(huì)增加一輛,租出的車(chē)每輛每月需要維護(hù)費(fèi)300元,未租出的車(chē)每輛每月需要維護(hù)費(fèi)100元,又該租賃公司每個(gè)月的固定管理費(fèi)為14200元.
(1)當(dāng)每輛車(chē)的月租金為3600元時(shí),能租出多少輛?
(2)當(dāng)每輛車(chē)的月租金為多少元時(shí),租賃公司的月收益最大?最大月收益是多少?(注:公司每月收益=汽車(chē)每月租金-車(chē)輛月維護(hù)費(fèi)-公司每月固定管理費(fèi))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.復(fù)數(shù)$\frac{z}{1-i}$=2+i,則$\overline z$的虛部為( 。
A.1B.iC.-1D.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在數(shù)列{an}中,已知a1=1,a2=5,an+2=an+1-an,則a2015等于( 。
A.-1B.-5C.1D.-4

查看答案和解析>>

同步練習(xí)冊(cè)答案