13.設(shè)變量x,y滿足線性約束條件$\left\{\begin{array}{l}x-y+5≥0\\ x+y≥0\\ x≤3\end{array}\right.$則目標函數(shù)z=2x+4y的最小值是( 。
A.6B.-2C.4D.-6

分析 由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}x-y+5≥0\\ x+y≥0\\ x≤3\end{array}\right.$作出可行域如圖,

聯(lián)立$\left\{\begin{array}{l}{x=3}\\{x+y=0}\end{array}\right.$,解得A(3,-3),
化目標函數(shù)z=2x+4y為y=$-\frac{1}{2}$x+$\frac{z}{4}$,
由圖可知,當(dāng)直線y=$-\frac{1}{2}$x+$\frac{z}{4}$過點A時,直線在y軸上的截距最小,z有最小值為6-12=-6,
故選:D.

點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,并且經(jīng)過點M(-$\sqrt{2}$,1).
(1)求橢圓的標準方程;
(2)若直線l與圓O:x2+y2=1相切,與橢圓C相交于A,B兩點,求△AOB的面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)拋物線y2=2px(p>0)焦點為F,準線為l,過焦點的直線分別交拋物線于A,B兩點,分別過A,B作l的垂線,垂足C,D.若|AF|=2|BF|,且三角形CDF的面積為$\sqrt{2}$,則p的值為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.計算:
(1)$\frac{-2\sqrt{3}i+1}{1+2\sqrt{3}i}$+($\frac{\sqrt{2}}{1+i}$)2000+$\frac{1+i}{3-i}$;
(2)$\frac{{5{{(4+i)}^2}}}{i(2+i)}+\frac{2}{{{{(1-i)}^2}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知$\frac{c}{b-a}=\frac{sinA+sinB}{sinA+sinC}$.
(1)求角B的大。
(2)若b=$2\sqrt{2}$,a+c=3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)$f(x)=\left\{\begin{array}{l}{e^x}+m\;-1,x≥0\\ ax+b,x<0\end{array}\right.$其中m<-1,對于任意x1∈R且x1≠0,均存在唯一實數(shù)x2,使得f(x2)=f(x1),且x1≠x2,若|f(x)|=f(m)有4個不相等的實數(shù)根,則a的取值范圍是( 。
A.(0,1)B.(-1,0)C.(-2,-1)∪(-1,0)D.(-2,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,D為BC中點,AD=3.
(1)當(dāng)BC=4,AB=4時,求AC的長;
(2)當(dāng)∠BAC=90°時,求△ABC周長的最大值;
(3)當(dāng)∠BAD=45°,∠CAD=30°時,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的一個零點為$\frac{π}{3}$,其圖象距離該零點最近的一條對稱軸為x=$\frac{π}{12}$.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若關(guān)于x的方程f(x)+log2k=0在x∈[$\frac{π}{4}$,$\frac{2π}{3}$]上恒有實數(shù)解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若點P到直線y=3的距離比到點F(0,-2)的距離大1,則點P的軌跡方程為( 。
A.y2=8xB.y2=-8xC.x2=8yD.x2=-8y

查看答案和解析>>

同步練習(xí)冊答案