函數(shù)的導數(shù)為0的點稱為函數(shù)的駐點,若點(1,1)為函數(shù)f(x)的駐點,則稱f(x)具有“1—1駐點性”.

(1)設函數(shù)f(x)=-x+2+alnx,其中a≠0。

①求證:函數(shù)f(x)不具有“1—1駐點性”;②求函數(shù)f(x)的單調區(qū)間

(2)已知函數(shù)g(x)=bx3+3x2+cx+2具有“1—1駐點性”,給定x1x2ÎR,x1x2,設λ為實數(shù),且λ≠-1,α=β=,若|g(α)-g(β)|>|g(x1)-g(x2)|,求λ的取值范圍.

解:(Ⅰ)①=-1++=-1+1+a≠0,

∴函數(shù)f(x)不具有“1—1駐點性”.…………………………………………2分

②由==

(ⅰ)當a+<0,即a<-時,<0.∴f(x)是(0,+∞)上的減函數(shù);

(ⅱ)當a+=0,即a=-時,顯然≤0.∴f(x)是(0,+∞)上的減函數(shù);………………………………4分

(ⅲ)當a+>0,即a>-時,由=0得=±…………………………………………6分

當-<a<0時,->0∴xÎ(0, a+-)時,<0;

xÎ( a+-, a++)時,>0; xÎ( a++, +∞)時,<0;

當a>0時,-<0 ∴xÎ(0, a++)時,>0; xÎ( a++,+∞)時,<0;

綜上所述:當a≤-時,函數(shù)f(x)的單調遞減區(qū)間為(0,+∞);   

當-<a<0時,函數(shù)f(x)的單調遞減區(qū)間為(0, a+-)和( a++,+∞),

函數(shù)f(x)的單調遞增區(qū)間為( a+-, a++);

當a>0時,函數(shù)f(x)的單調遞增區(qū)間為(0, a++),

函數(shù)f(x)的單調遞減區(qū)間為( a++, +∞);…………………………………………9分

(Ⅱ)由題設得:=3bx2+6x+c,∵g(x)具有“1—1駐點性”∴

解得=-3x2+6x-3=-3(x-1)2≤0,故g(x)在定義域R上單調遞減.

①當λ≥0時,有α==x1,α==x2,即αÎ[x1,x2),同理βÎ(x1,x2] ………11分

g(x)的單調性可知:g(α),g(β)Î[ g(x2),g(x1)]∴|g(α)-g(β)|≤|g(x1)-g(x2)|與題設|g(α)-g(β)|>|g(x1)-g(x2)|不符.

②當-1<λ<0時,α==x1,β==x2……………………………………13分

即α<x1<x2<β∴g(β)<g(x2)<g(x1)<g(α)∴|g(α)-g(β)|>|g(x1)-g(x2)|,符合題設

③當λ<-1時,α==x2, β==x1,即β<x1<x2<α

g(α)<g(x2)<g(x1)<g(β)∴|g(α)-g(β)|>|g(x1)-g(x2)|也符合題設………     ……………………15分

由此,綜合①②③得所求的λ的取值范圍是λ<0且λ≠-1

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0).定義:(1)f(x)的導數(shù)f′(x)(也叫f(x)一階導數(shù))的導數(shù),f″(x)為f(x)的二階導數(shù),若方程f″(x)=0有實數(shù)解x0,則稱點(x0,f(x0) )為函數(shù)y=f(x)的“拐點”;定義:(2)設x0為常數(shù),若定義在R上的函數(shù)y=f(x)對于定義域內的一切實數(shù)x,都有f(x0+x)+f(x0-x)=2f(x0)恒成立,則函數(shù)y=f(x)的圖象關于點(x0,f(x0))對稱.
(1)己知f(x)=x3-3x2+2x+2,求函數(shù)f(x)的“拐點”A的坐標;
(2)檢驗(1)中的函數(shù)f(x)的圖象是否關于“拐點”A對稱;
(3)對于任意的三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)寫出一個有關“拐點”的結論(不必證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)的導數(shù)為0的點稱為函數(shù)的駐點,若點(1,1)為函數(shù)f(x)的駐點,則稱f(x)具有“1-1駐點性”.
(1)設函數(shù)f(x)=-x+2
x
+alnx,其中a≠0.
①求證:函數(shù)f(x)不具有“1-1駐點性”
②求函數(shù)f(x)的單調區(qū)間
(2)已知函數(shù)g(x)=bx3+3x2+cx+2具有“1-1駐點性”,給定x1,x2∈R,x1<x2,設λ為實數(shù),且λ≠-1,α=
x1+λx2
1+λ
,β=
x2+λx1
1+λ
,若|g(α)-g(β)|>|g(x1)-g(x2)|,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

函數(shù)的導數(shù)為0的點稱為函數(shù)的駐點,若點(1,1)為函數(shù)f(x)的駐點,則稱f(x)具有“1-1駐點性”.
(1)設函數(shù)f(x)=-x+2數(shù)學公式+alnx,其中a≠0.
①求證:函數(shù)f(x)不具有“1-1駐點性”
②求函數(shù)f(x)的單調區(qū)間
(2)已知函數(shù)g(x)=bx3+3x2+cx+2具有“1-1駐點性”,給定x1,x2∈R,x1<x2,設λ為實數(shù),且λ≠-1,α=數(shù)學公式,β=數(shù)學公式,若|g(α)-g(β)|>|g(x1)-g(x2)|,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江蘇省無錫市高考數(shù)學模擬試卷(3)(解析版) 題型:解答題

函數(shù)的導數(shù)為0的點稱為函數(shù)的駐點,若點(1,1)為函數(shù)f(x)的駐點,則稱f(x)具有“1-1駐點性”.
(1)設函數(shù)f(x)=-x+2+alnx,其中a≠0.
①求證:函數(shù)f(x)不具有“1-1駐點性”
②求函數(shù)f(x)的單調區(qū)間
(2)已知函數(shù)g(x)=bx3+3x2+cx+2具有“1-1駐點性”,給定x1,x2∈R,x1<x2,設λ為實數(shù),且λ≠-1,α=,β=,若|g(α)-g(β)|>|g(x1)-g(x2)|,求λ的取值范圍.

查看答案和解析>>

同步練習冊答案