已知數(shù)列{an}的通項公式為an=
1
n+1
+
1
n+2
+…+
1
2n
(n∈N),求證:an是單調(diào)遞增函數(shù).
考點:數(shù)列的函數(shù)特性
專題:等差數(shù)列與等比數(shù)列
分析:根據(jù)通項公式得出n+1-an=
1
2n+1
+
1
2n+2
-
1
n+1
=
1
(2n+1)(2n+2)
>0,可判斷單調(diào)性.
解答: 解:∵列{an}的通項公式為an=
1
n+1
+
1
n+2
+…+
1
2n
(n∈N),
∴an+1=
1
n+2
+
1
n+3
+…+
1
2n
+
1
2n+1
+
1
2n+2
,
∴an+1-an=
1
2n+1
+
1
2n+2
-
1
n+1
=
1
(2n+1)(2n+2)
>0,
即an+1>an,
∴數(shù)列{an}是單調(diào)遞增數(shù)列.
點評:本題考查了根據(jù)數(shù)列的通項公式,作差an+1-an,判斷正負,運用不等式求解,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知平行四邊形ABCD的三個頂點的坐標為A(2,2+2
2
),B(-2,2),C(0,2-2
2
),求頂點D的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲乙兩個袋子中各有10個小球,其中甲袋中有4個紅球,乙袋中有5個紅球,甲乙兩個袋子中隨機的各抽出一個小球,求:
(1)其中至少有1個紅球的概率;
(2)其中恰有一紅球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四面體ABCD中,AB⊥平面BCD,∠BCD=90°,點E是線段AD上一點(不與線段AD重合),F(xiàn)是點B在線段AC上的射影,求證:平面BEF⊥平面ACD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求如圖的區(qū)域面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x|3≤x<7},B={x|1<x<9},則(∁RA)∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,若c=4,b=3,C=2B,則cosC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A(x1,y1),B(x2,y2)(x1<x2)是函數(shù)y=sinx(-π<x<0)上兩不同點,試根據(jù)函數(shù)圖象特征判定下列四個不等式的正確性:
sinx1
x1
sinx2
x2

②sinx1<sinx2;
1
2
(sinx1+sinx2)>sin
x1+x2
2

④sin
x1
2
>sin
x2
2

其中正確的不等式的個數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足:an+1=2(an-1)2+1且a1=3,an>1
(1)設(shè)bn=log2(an-1),求證:{bn+1}為等比數(shù)列;
(2)設(shè)cn=nbn,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

同步練習(xí)冊答案