分析 (1)已知等式利用正弦定理化簡,再利用誘導(dǎo)公式變形,求出cosC的值,即可確定出C的度數(shù);
(2)由c與C的度數(shù),表示出三角形ABC面積,利用余弦定理及基本不等式求出ab的最大值,進(jìn)而確定出三角形ABC面積的最大值,以及此時三角形的形狀即可.
解答 解:(1)∵ccosB=(2a-b)cosC,
∴由正弦定理可知,sinCcosB=2sinAcosC-sinBcosC,
即sinCcosB+cosCsinB=2sinAcosC,
∴sin(C+B)=2sinAcosC,
∵A+B+C=π,∴sinA=2sinAcosC,
∵sinA≠0,
∴cosC=$\frac{1}{2}$,
∵0<C<π,
∴C=$\frac{π}{3}$;
(2)由題可知c=4,C=$\frac{π}{3}$,
∴S△ABC=$\frac{\sqrt{3}}{4}$ab,
∵由余弦定理可知:a2+b2=c2+2abcosC,即a2+b2=16+ab≥2ab,
∴ab≤16,當(dāng)且僅當(dāng)a=b時取等號,
∴S△ABC的最大值為4$\sqrt{3}$,此時三角形為等邊三角形.
點評 此題考查了正弦、余弦定理,以及三角函數(shù)中的恒等變換應(yīng)用,熟練掌握定理是解本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1) | B. | (1,+∞) | C. | (0,1)∪(1,+∞) | D. | (-∞,0)∪(0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com