18.已知a>0,($\frac{a}{{\sqrt{x}}}$-x)6展開式的常數(shù)項為15,則$\int_{-a}^a$(x2+x+$\sqrt{1-{x^2}}}$)dx=$\frac{2}{3}+\frac{π}{2}$.

分析 首先根據(jù)二項式系數(shù)的性質(zhì).求出a的值,在求定積分的值.

解答 解:根據(jù)二項式定理的通項公式,${T}_{r+1}={C}_{n}^{r}{a}^{n-r}^{r}$
∴二項式($\frac{a}{{\sqrt{x}}}$-x)6展開的通項公式為${C}_{6}^{r}(\frac{a}{\sqrt{x}})^{6-r}(-x)^{r}$
∵常數(shù)項為15,∴$-\frac{1}{2}(6-r)+r=0$,解得:r=2
∵常數(shù)項為${C}_{6}^{2}{a}^{4}(-1)^{2}$=15
解得:a=1
∴$\int_{-a}^a$(x2+x+$\sqrt{1-{x^2}}}$)dx=${∫}_{-1}^{1}{x}^{2}wvyg2ha_{x}+{∫}_{-1}^{1}xyh812ru_{x}{+∫}_{-1}^{1}\sqrt{1-{x}^{2}}23jx3jb_{x}$
∵${∫}_{-1}^{1}{x}^{2}w8v3rpd_{x}={2∫}_{0}^{1}{x}^{2}6nulig1_{x}=\frac{2}{3}$,${∫}_{-1}^{1}xujqt378_{x}=0$          ${∫}_{-1}^{1}\sqrt{1-{x}^{2}}rmz28c2_{x}=\frac{π}{2}$
∴$\int_{-a}^a$(x2+x+$\sqrt{1-{x^2}}}$)dx=$\frac{2}{3}+\frac{π}{2}$
故答案為:$\frac{2}{3}+\frac{π}{2}$

點評 本題主要考查二項式定理的應(yīng)用,二項式系數(shù)的性質(zhì),二項式展開式的通項公式,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,同時考查了定積分的基本計算.屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=$\sqrt{x+2}$-$\frac{1}{x-3}$.
(1)求函數(shù)y=f(x)的定義域;
(2)若函數(shù)y=f(x)+a在區(qū)間(-2,2)上有且僅有一個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如表是某設(shè)備的使用年限x和所支出的維修費用y(萬元)的幾組對照數(shù)據(jù)
x3456
y2.5344.5
(I)請根據(jù)如表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(II)根據(jù)(I)求出的線性回歸方程,預(yù)測該設(shè)備使用8年時,維修費用是多少?
(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)f(x)=x2-mx+c,當(dāng)x∈(-∞,1)時是減函數(shù),則m的取值范圍是m≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.2014年9月13日,被譽為西南第一高鐵的成綿樂客運專線正式進(jìn)入調(diào)試階段.在進(jìn)行“綜合檢測列車逐級提速試驗”時,必須對其中三項不同的指標(biāo)甲、乙、丙進(jìn)行通過量化檢測.假設(shè)三項指標(biāo)甲、乙、丙進(jìn)行通過檢測合格的概率分別為$\frac{2}{3}$、$\frac{2}{3}$、$\frac{1}{2}$,指標(biāo)甲、乙、丙檢測合格分別記4分、2分、4分,若某項指標(biāo)不合格,則該項指標(biāo)記0分,各項指標(biāo)檢測結(jié)果互不影響.
(1)求該試驗中對三項不同的指標(biāo)量化檢測得分不低于8分的概率;
(2)記三個指標(biāo)中被檢測合格的指標(biāo)個數(shù)為隨機變量ξ,求ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列說法中不正確的是( 。
A.對于線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$,直線必經(jīng)過點($\overline{x}$,$\overline{y}$)
B.莖葉圖的優(yōu)點在于它可以保存原始數(shù)據(jù),并且可以隨時記錄
C.擲一枚均勻硬幣出現(xiàn)正面向上的概率是$\frac{1}{2}$,那么一枚硬幣投擲2次一定出現(xiàn)正面
D.將一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一常數(shù)后,方差恒不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若函數(shù)f(x)=ax2+ax+1沒有零點,則實數(shù)a的取值范圍為[0,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知sin(α+π)=$\frac{4}{5}$,且sinαcosα<0,求3sin2(2π-α)+4cos2(π+α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.某邊長為1的正方體展開圖如圖所示,在原正方體中,△ABC的面積為$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案