斜率為1的直線被圓截得的弦長為2,則直線的方程為      
依題意可得,圓心即原點到直線的距離
設直線方程為,則
解得,
所以直線方程為
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖6,已知動圓M過定點F(1,0)且與x軸相切,點F 關于圓心M 的對稱點為 F',動點F’的軌跡為C.
(1)求曲線C的方程;
(2)設是曲線C上的一個定點,過點A任意作兩條傾斜角互補的直線,分別與曲線C相交于另外兩點P 、Q.
①證明:直線PQ的斜率為定值;
②記曲線C位于P 、Q兩點之間的那一段為l.若點B在l上,且點B到直線PQ的
距離最大,求點B的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓的方程為且與圓相切.
(1)求直線的方程;
(2)設圓軸交于兩點,M是圓上異于的任意一點,過點且與軸垂直的直線為,直線交直線于點P’,直線交直線于點Q’
求證:以P’Q’為直徑的圓總過定點,并求出定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知圓的圓心在直線上,其中,則的最小值是__________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

被直線截得的弦長最短時的值等于            

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

過點的圓與直線相切于點,則圓的標準方程為_    __, 圓軸所得的弦長為_____________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓,圓,動點到圓,上點的距離的最小值相等.
(1)求點的軌跡方程;
(2)點的軌跡上是否存在點,使得點到點的距離減去點到點的距離的差為,如果存在求出點坐標,如果不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點是圓上的動點, (13分)
(1)求的取值范圍
(2)若恒成立,求實數(shù)的取值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直線與圓交于兩點,且,則實數(shù)的值為(    )
A.2B.-2 C.2或-2D.

查看答案和解析>>

同步練習冊答案