【題目】已知集合A={x|lgx≤0},B={x|x2<1},則(RA)∩B=(
A.(0,1)
B.(0,1]
C.(﹣1,1)
D.(﹣1,0]

【答案】D
【解析】解:∵集合A={x|lgx≤0}={x|0<x≤1}, B={x|x2<1}={x|﹣1<x<1},
∴CRA={x|x≤0或x>1},
∴(RA)∩B={x|﹣1<x≤0}=(﹣1,0].
故選:D.
【考點精析】解答此題的關(guān)鍵在于理解交、并、補集的混合運算的相關(guān)知識,掌握求集合的并、交、補是集合間的基本運算,運算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結(jié)合的思想方法.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)是R上的偶函數(shù),且在[0,+∞)上單調(diào)遞增,則下列各式成立的是(
A.f(﹣2)>f(0)>f(1)
B.f(﹣2)>f(﹣1)>f(0)
C.f(1)>f(0)>f(﹣2)
D.f(1)>f(﹣2)>f(0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y=f(x)的圖象與直線x=1的交點有幾個(
A.1
B.0
C.0或1
D.0或2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】不等式-x2+|x|+2<0 的解集是( )
A.{x|-2<x<2}
B.{x|x<-2或x>2}
C.{x|-1<x<1}
D.{x|x<-1或x>1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】要描述一工廠的組成情況,應(yīng)用( )
A.程序框圖
B.工序流程
C.知識結(jié)構(gòu)圖
D.組織結(jié)構(gòu)圖

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】把3男2女共5名新生分配給甲、乙兩個班,每個班分配的新生不少于2名,且甲班至少分配1名女生,則不同的分配方案種數(shù)為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用反證法證明命題:“一個三角形中不能有兩個直角”的過程歸納為以下三個步驟:
① A+B+C=900+900+C>1800 , 這與三角形內(nèi)角和為 1800 相矛盾, A=B=900不成立;②所以一個三角形中不能有兩個直角;③假設(shè)三角形的三個內(nèi)角 A 、 B 、 C 中有兩個直角,不妨設(shè) A=B=900 ,正確順序的序號為( )
A.①②③
B.③①②
C.①③②
D.②③①

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“p∧q是真命題”是“p∨q是真命題”的(
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在[﹣2,1]上的某連續(xù)函數(shù)y=f(x)部分函數(shù)值如表:

x

﹣2

﹣1

0

1

f(x)

﹣1.5

﹣1

0.8

2

有同學僅根據(jù)表中數(shù)據(jù)作出了下列論斷:
①函數(shù)y=f(x)在[﹣2,1]上單調(diào)遞增; ②函數(shù)y=f(x)在[﹣2,1]上恰有一個零點;
③方程f(x)=0在[﹣2,﹣1]上必無實根.④方程f(x)﹣1=0必有實根.
其中正確的論斷個數(shù)是(
A.0
B.1
C.2
D.3

查看答案和解析>>

同步練習冊答案