Processing math: 15%
5.(理科)已知函數(shù)f(x)=-6ln(ax+2)+12x2在x=2處有極值.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若直線y=kx與函數(shù)f′(x)有交點(diǎn),求實(shí)數(shù)k的取值范圍.

分析 (Ⅰ)求出f(x)的導(dǎo)數(shù),由f′(2)=0,求出a的值,從而求出函數(shù)的單調(diào)區(qū)間;(Ⅱ)根據(jù)二次函數(shù)的性質(zhì)求出k的范圍即可.

解答 解:(Ⅰ)因?yàn)?f(x)=-6ln(ax+2)+\frac{1}{2}{x^2}f'(x)=-6•\frac{a}{ax+2}+x 由f′(2)=0,可得 a=2, 經(jīng)檢驗(yàn)a=2時(shí),函數(shù)f(x)在x=2處取得極值, f(x)=-6ln(2x+2)+\frac{1}{2}{x^2},{f^'}(x)=\frac{-6}{x+1}+x=\frac{{{x^2}+x-6}}{x+1}=\frac{(x+3)(x-2)}{x+1}$
而函數(shù)f(x)的定義域?yàn)椋?1,+∞),
當(dāng)x變化時(shí),f′(x),f(x)的變化情況如下表:

x(-1,2)2(2,+∞)
f′(x)-0+
f(x)極小值
由表可知,f(x)的單調(diào)減區(qū)間為(-1,2),f(x)的單調(diào)增區(qū)間為(2,+∞);
(Ⅱ)若f′(x)=kx,則有x2+x-6=kx2+kx,其中x>-1,
所以(k-1)x2+(k-1)x+6=0有大于-1的根,
顯然k≠1,設(shè)g(x)=(k-1)x2+(k-1)x+6,
則其對(duì)稱軸為x=-\frac{1}{2},根據(jù)二次函數(shù)的性質(zhì)知道,
只要△=(k-1)2-24(k-1)≥0,
解得:k≥25或k<1.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及二次函數(shù)的性質(zhì),是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.下列各組函數(shù),在同一直角坐標(biāo)中,f(x)與g(x)有相同圖象的一組是( �。�
A.f(x)=({x^2}{)^{\frac{1}{2}}},g(x)=({x^{\frac{1}{2}}}{)^2}B.f(x)=\frac{x^2-9}{x+3},g(x)=x-3
C.f(x)={log_2}{x^2},g(x)=2log2xD.f(x)=x,g(x)=lg10x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.定義在R上的函數(shù)f(x),f′(x)是其導(dǎo)數(shù),且滿足f(x)+f′(x)>2,ef(1)=2e+4,則不等式exf(x)>4+2ex(其中e為自然對(duì)數(shù)的底數(shù))的解集為(  )
A.(1,+∞)B.(-∞,0)∪(1,+∞)C.(-∞,0)∪(0,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.拋物線y2=x上一點(diǎn)M到焦點(diǎn)的距離為1,則點(diǎn)M的橫坐標(biāo)是\frac{3}{4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖所示,已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,過(guò)點(diǎn)F垂直于x軸的直線與拋物線C相交于A,B兩點(diǎn),拋物線C在A,B兩點(diǎn)處的切線及直線AB所圍成的三角形面積為4.
(1)求拋物線C的方程;
(2)設(shè)M,N是拋物線C上異于原點(diǎn)O的兩個(gè)動(dòng)點(diǎn),且滿足kOM•kON=kOA•kOB,求△OMN面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,點(diǎn)F1,F(xiàn)2分別是橢圓C1\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)的左、右焦點(diǎn),點(diǎn)A是下頂點(diǎn),拋物線C2:y=x2-1與x軸交于點(diǎn)F1,F(xiàn)2,與y軸交于點(diǎn)B,且點(diǎn)B是線段OA的中點(diǎn),點(diǎn)N為拋物線上C2的一動(dòng)點(diǎn),過(guò)點(diǎn)N作拋物線C2的切線交橢圓C1于P,Q兩點(diǎn).
(1)求橢圓C1的方程;
(2)若點(diǎn)M(0,-\frac{4}{5}),求△MPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)α,β為兩個(gè)不重合的平面,m,n是兩條不重合的直線,α⊥β,α∩β=m,則以下說(shuō)法正確的是( �。�
A.若m⊥n,則n⊥βB.若m⊥n,n?α,則n⊥βC.若m∥n,則n∥βD.若m∥n,則n⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.求滿足以C(2,-1)為圓心且與直線3x-4y-5=0相切圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.某學(xué)校為了更好的培養(yǎng)尖子生,使其全面發(fā)展,決定由3名教師對(duì)5個(gè)尖子生進(jìn)行“包教”,要求每名教師的“包教”學(xué)生不超過(guò)2人,則不同的“包教”方案有(  )
A.60B.90C.150D.120

查看答案和解析>>

同步練習(xí)冊(cè)答案