(本小題滿分14分)

         已知函數(shù)

         (Ⅰ)當(dāng)時,求函數(shù)的圖象在處的切線方程;

         (Ⅱ)判斷函數(shù)的單調(diào)性;

         (Ⅲ)若函數(shù)上為增函數(shù),求的取值范圍.

 

【答案】

(Ⅰ)

(Ⅱ)當(dāng)時,函數(shù)單調(diào)遞增;

當(dāng)時,函數(shù)單調(diào)遞減,在上單調(diào)遞增.

(Ⅲ)

【解析】(I)當(dāng)a=2時,先求出的值,即切線的斜率,然后寫出點(diǎn)斜式方程,再化成一般式即可.

(II)先求導(dǎo),可得,然后再對和a<0兩種情況進(jìn)行討論研究其單調(diào)性.

(III)本小題轉(zhuǎn)化為上恒成立,也可考慮求出f(x)的增區(qū)間D,然后根據(jù)求解也可.

(Ⅰ)當(dāng)時,),········································· 1分

,···································································· 2分

,所以所求的切線的斜率為3.······················································· 3分

又∵,所以切點(diǎn)為.

 故所求的切線方程為:.······································································· 4分

(Ⅱ)∵,

······························································· 5分

①當(dāng)時,∵,∴;····························································· 6分

②當(dāng)時,

,得;由,得;·························· 8分

綜上,當(dāng)時,函數(shù)單調(diào)遞增;

當(dāng)時,函數(shù)單調(diào)遞減,在上單調(diào)遞增.········ 9分

(Ⅲ)①當(dāng)時,由(Ⅱ)可知,函數(shù)單調(diào)遞增.此時,,故上為增函數(shù).······································································································· 11分

②當(dāng)時,由(Ⅱ)可知,函數(shù)上單調(diào)遞增.

∵ 上為增函數(shù),

∴ ,故,解得

∴ .······························································································ 13分

綜上所述,的取值范圍為.                      14分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達(dá)式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)AB是橢圓C1的兩個焦點(diǎn),當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進(jìn)行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.

⑴ 求滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊答案