【題目】已知函數(shù)(且).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)若,討論函數(shù)的單調(diào)性與單調(diào)區(qū)間;
(Ⅲ)若有兩個(gè)極值點(diǎn)、,證明:.
【答案】(Ⅰ);(Ⅱ)詳見解析;(Ⅲ)證明見解析.
【解析】
(Ⅰ)求出和的值,利用點(diǎn)斜式可得出所求切線的方程;
(Ⅱ)求得,由,分和兩種情況討論,分析的符號(hào)變化,可得出函數(shù)的單調(diào)遞增區(qū)間和遞減區(qū)間;
(Ⅲ)由題意可知,方程有兩正根、,利用韋達(dá)定理得出,且,將所證不等式轉(zhuǎn)化為,構(gòu)造函數(shù),利用導(dǎo)數(shù)證明出當(dāng)時(shí),即可.
由題可知:函數(shù)的定義域?yàn)?/span>
(Ⅰ)因?yàn)?/span>時(shí),,所以,
那么,,
所以曲線在處的切線方程為:,
即;
(Ⅱ)因?yàn)?/span>,由可得:
①當(dāng),,時(shí),有,,滿足,
和時(shí),
即函數(shù)在和上為減函數(shù);
時(shí),,即函數(shù)在上為增函數(shù);
②當(dāng)時(shí),,恒成立,所以函數(shù)在為減函數(shù).
綜上可知:
當(dāng)時(shí),函數(shù)在和上為減函數(shù),
在上為增函數(shù);
當(dāng)時(shí),函數(shù)在上為減函數(shù);
(Ⅲ)因?yàn)?/span>有兩個(gè)極值點(diǎn)、,
則有兩個(gè)正根、,則有,且,,即,
所以
若要,即要,
構(gòu)造函數(shù),則,易知在上為增函數(shù),
且,,
所以存在使即,
且當(dāng)時(shí),函數(shù)單調(diào)遞減;
當(dāng)時(shí),,函數(shù)單調(diào)遞增.
所以函數(shù)在上有最小值為,
又因?yàn)?/span>則,所以在上恒成立,
即成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了迎接2019年全國文明城市評(píng)比,某市文明辦對(duì)市民進(jìn)行了一次文明創(chuàng)建知識(shí)的網(wǎng)絡(luò)問卷調(diào)查.每一位市民有且僅有一次參加機(jī)會(huì),通過隨機(jī)抽樣,得到參加問卷調(diào)查的1000人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如下表所示:
組別 | |||||||
頻數(shù) | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由頻數(shù)分布表可以認(rèn)為,此次問卷調(diào)查的得分服從正態(tài)分布,近似為這1000人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表),請(qǐng)利用正態(tài)分布的知識(shí)求;
(2)在(1)的條件下,文明辦為此次參加問卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案:
(i)得分不低于的可以獲贈(zèng)2次隨機(jī)話費(fèi),得分低于的可以獲贈(zèng)1次隨機(jī)話費(fèi);
(ii)每次獲贈(zèng)的隨機(jī)話費(fèi)和對(duì)應(yīng)的概率為:
獲贈(zèng)的隨機(jī)話費(fèi)(單位:元) | 20 | 40 |
概率 |
現(xiàn)市民小王要參加此次問卷調(diào)查,記(單位:元)為該市民參加問卷調(diào)查獲贈(zèng)的話費(fèi),求的分布列及數(shù)學(xué)期望.
附:①;
②若,則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱柱ABC﹣A1B1C1中,M,M1分別為AB,A1B1中點(diǎn).
(1)求證:C1M1∥面A1MC;
(2)若面ABC⊥面ABB1A1,△AB1B為正三角形,AB=2,BC=1,,求四棱錐B1﹣AA1C1C的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大自然是非常奇妙的,比如蜜蜂建造的蜂房.蜂房的結(jié)構(gòu)如圖所示,開口為正六邊形ABCDEF,側(cè)棱AA'、BB'、CC'、DD'、EE'、FF'相互平行且與平面ABCDEF垂直,蜂房底部由三個(gè)全等的菱形構(gòu)成.瑞士數(shù)學(xué)家克尼格利用微積分的方法證明了蜂房的這種結(jié)構(gòu)是在相同容積下所用材料最省的,因此,有人說蜜蜂比人類更明白如何用數(shù)學(xué)方法設(shè)計(jì)自己的家園.英國數(shù)學(xué)家麥克勞林通過計(jì)算得到∠B′C′D′=109°28′16'.已知一個(gè)房中BB'=5,AB=2,tan54°44′08',則此蜂房的表面積是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近五年來某草場(chǎng)羊只數(shù)量與草場(chǎng)植被指數(shù)兩變量間的關(guān)系如表所示,繪制相應(yīng)的散點(diǎn)圖,如圖所示:
年份 | 1 | 2 | 3 | 4 | 5 |
羊只數(shù)量(萬只) | 1.4 | 0.9 | 0.75 | 0.6 | 0.3 |
草地植被指數(shù) | 1.1 | 4.3 | 15.6 | 31.3 | 49.7 |
根據(jù)表及圖得到以下判斷:①羊只數(shù)量與草場(chǎng)植被指數(shù)成減函數(shù)關(guān)系;②若利用這五組數(shù)據(jù)得到的兩變量間的相關(guān)系數(shù)為,去掉第一年數(shù)據(jù)后得到的相關(guān)系數(shù)為,則;③可以利用回歸直線方程,準(zhǔn)確地得到當(dāng)羊只數(shù)量為2萬只時(shí)的草場(chǎng)植被指數(shù);以上判斷中正確的個(gè)數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x),若存在x1,x2∈R且x1≠x2,使得f(x1)=f(x2)成立,則實(shí)數(shù)a的取值范圍是( )
A.[3,+∞)B.(3,+∞)C.(﹣∞,3)D.(﹣∞,3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+acosx.
(1)求函數(shù)f(x)的奇偶性.并證明當(dāng)|a|≤2時(shí)函數(shù)f(x)只有一個(gè)極值點(diǎn);
(2)當(dāng)a=π時(shí),求f(x)的最小值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把4個(gè)相同的小球全部放入2個(gè)不同的盒子里,每個(gè)盒子至少放1個(gè)球,不同的放法數(shù)記為;把4個(gè)不同的小球全部放入2個(gè)不同的盒子里,每個(gè)盒子至少放1個(gè)球,不同的放法數(shù)記為.現(xiàn)在從到的所有整數(shù)中(包括和兩個(gè)整數(shù))抽取3個(gè)數(shù),則這3個(gè)數(shù)之和共有( )種結(jié)果.
A.26B.27C.28D.29
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線C:,過拋物線焦點(diǎn)F的直線交拋物線C于A,B兩點(diǎn),P是拋物線外一點(diǎn),連接,分別交拋物線于點(diǎn)C,D,且,設(shè),的中點(diǎn)分別為M,N.
(1)求證:軸;
(2)若,求面積的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com