3.已知一幾何體的正視圖、俯視圖為直角三角形,側視圖為矩形,則該幾何體的體積為( 。
A.6B.12C.18D.36

分析 由已知中的三視圖,可得該幾何體是一個以側視圖為底面的四棱錐,代入棱錐體積公式,可得答案.

解答 解:由已知中的三視圖,可得該幾何體是一個以側視圖為底面的四棱錐,
故體積V=$\frac{1}{3}$×2×3×3=6,
故選:A

點評 本題考查的知識點是棱錐的體積,簡單幾何體的三視圖,難度中檔.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.若函數(shù)f(x)滿足:f(-x)+f(x)=ex+e-x,則稱f(x)為“e函數(shù)”.
(1)試判斷f(x)=ex+x3是否為“e函數(shù)”,并說明理由;
(2)若f(x)為“e函數(shù)”且$f(x)-f(-x)={e^x}-{e^{-x}}-\frac{2}{x}$,
(ⅰ)求證:f(x)的零點在$(\frac{1}{2},2)$上;
(ⅱ)求證:對任意a>0,存在λ>0,使f(x)<0在(0,λa)上恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知定義在R上的函數(shù)f(x),滿足$f({x+4})=f(x),f(x)=\left\{\begin{array}{l}\frac{k}{x-1},-2≤x≤0\\ x+2,0<x<2\end{array}\right.$,且f(3)=f(1)-1.
(1)求實數(shù)k的值;
(2)若函數(shù)g(x)=f(x)+f(-x)(-2≤x≤2),求g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知k∈Z,$\overrightarrow{AB}$=(k,1),$\overrightarrow{AC}$=(2,4),若|$\overrightarrow{AB}$|≤$\sqrt{17}$,則∠B是直角的概率是( 。
A.$\frac{4}{9}$B.$\frac{1}{3}$C.$\frac{2}{9}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.為了得到y(tǒng)=cos2x,只需要將y=sin(2x+$\frac{π}{3}$)作如下變換( 。
A.向右平移$\frac{π}{3}$個單位B.向右平移$\frac{π}{6}$個單位
C.向左平移$\frac{π}{12}$個單位D.向右平移$\frac{π}{12}$個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知向量$\overrightarrow a=(2,-1),\overrightarrow b=(0,1)$,則$|\overrightarrow a+2\overrightarrow b|$=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知f(x)=ex-ax2-2x+b(e為自然對數(shù)的底數(shù),a,b∈R)
(1)設f′(x)為f(x)的導函數(shù),求f′(x)的遞增區(qū)間;
(2)當a>0時,證明:f′(x)的最小值小于零;
(3)若a<0,f(x)>0恒成立,求符合條件的最小整數(shù)b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知命題p:|x+1|>2,命題q:5x-6>x2,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.某市為增強市民的環(huán)境保護意識,某市組織了一批年齡在[20,45]歲的志愿者為市民展開宣傳活動,現(xiàn)從這批志愿者中隨機抽取100名按年齡分組:第1組[20,25),第2組[25,30),第3組[30,35),第4組[35,40),第5組[40,45],各組人數(shù)的頻率分布直方圖如圖所示,現(xiàn)從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加宣傳活動.
(Ⅰ)應從第3,4,5組各抽取多少名志愿者?
(Ⅱ)在這6名志愿者中隨機抽取2名擔任宣傳后動負責人,求第3組至少有一名志愿者被抽中的概率.

查看答案和解析>>

同步練習冊答案