A. | 16π+$\sqrt{3}π$ | B. | 16π+8$\sqrt{3}$π | C. | 16π+$\frac{8}{3}\sqrt{3}π$ | D. | 16π+$\frac{4}{3}\sqrt{3}π$ |
分析 由幾何體的三視圖,知該幾何體是一個(gè)底面直徑為4高為4的圓柱和一個(gè)度面直徑為4高為2$\sqrt{3}$的圓錐的組合體,由此能求出該幾何體的體積.
解答 解:由幾何體的三視圖,知該幾何體是一個(gè)底面直徑為4高為4的圓柱和一個(gè)度面直徑為4高為2$\sqrt{3}$的圓錐的組合體,
∴該幾何體的體積為:
V=$π×(\frac{4}{2})^{2}×4$+$\frac{1}{3}×π(\frac{4}{2})^{2}×2\sqrt{3}$=16π+$\frac{8}{3}\sqrt{3}π$.
故選:C.
點(diǎn)評(píng) 本題考查幾何體的體積的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意三視圖的性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{4}$+$\frac{1}{4}$i | D. | $\frac{\sqrt{3}}{4}$-$\frac{1}{4}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | $4\sqrt{3}$ | C. | $\frac{{4\sqrt{3}}}{3}$ | D. | $\frac{32}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {2,3} | B. | {2} | C. | {1,3,4} | D. | {2,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com