(2013•懷化三模)如圖,區(qū)域OAB由y軸,直線y=1及曲線y=x2(x≥0)圍成,假設(shè)隨機(jī)向該區(qū)域內(nèi)投點(diǎn),該點(diǎn)落在區(qū)域內(nèi)每個(gè)位置是等可能的.現(xiàn)隨機(jī)向區(qū)域投一點(diǎn)p,則直線OP的斜率小于1的概率是(  )
分析:利用定積分分別確定區(qū)域的面積與坐標(biāo)原點(diǎn)與該點(diǎn)的連線的斜率小于1的時(shí)區(qū)域的面積,即可求得概率.
解答:解:由題意,由y軸,直線y=1及曲線y=x2(x≥0)圍成區(qū)域的面積為:
1-
1
0
(x2)dx=1-
1
3
x3
|
1
0
=
2
3

又直線op的斜率小于1的區(qū)域內(nèi)的面積為
2
3
-
1
2
=
1
6
,
則直線op的斜率小于1的概率是
1
6
2
3
=
1
4

故選B.
點(diǎn)評(píng):本題考查幾何概型,考查定積分知識(shí)的運(yùn)用,解題的關(guān)鍵是利用定積分求面積.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•懷化三模)一個(gè)空間幾何體的正視圖、側(cè)視圖為兩個(gè)邊長(zhǎng)是1的正方形,俯視圖是直角邊長(zhǎng)為1的等腰直角三角形,則這個(gè)幾何體的表面積等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•懷化三模)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
過點(diǎn)(
3
3
2
)
,離心率e=
1
2
,若點(diǎn)M(x0,y0)在橢圓C上,則點(diǎn)N(
x0
a
,
y0
b
)
稱為點(diǎn)M的一個(gè)“橢點(diǎn)”,直線l交橢圓C于A、B兩點(diǎn),若點(diǎn)A、B的“橢點(diǎn)”分別是P、Q,且以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O.
(1)求橢圓C的方程;
(2)若橢圓C的右頂點(diǎn)為D,上頂點(diǎn)為E,試探究△OAB的面積與△ODE的面積的大小關(guān)系,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•懷化三模)計(jì)算 (log29)•(log34)=
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•懷化三模)若正數(shù)a,b,c滿足a+b+c=1,則
1
3a+2
+
1
3b+2
+
1
3c+2
的最小值為
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•懷化三模)每年的三月十二日是中國(guó)的植樹節(jié).林管部門在植樹前,為保證樹苗的質(zhì)量,都會(huì)在植樹前對(duì)樹苗進(jìn)行檢測(cè).現(xiàn)從甲、乙兩批樹苗中各抽了10株,測(cè)得髙度如下莖葉圖,(單位:厘米),規(guī)定樹苗髙于132厘米為“良種樹苗”.

(I)根據(jù)莖葉圖,比較甲、乙兩批樹苗的高度,哪種樹苗長(zhǎng)得整齊?
(Ⅱ)設(shè)抽測(cè)的10株甲種樹苗高度平均值為
.
x
,將這10株樹苗的高度依次輸入如圖程序框圖進(jìn)行運(yùn)算,問輸出的S為多少?.
(Ⅲ)從抽測(cè)的甲乙兩種“良種樹苗”中任取2株,至少1株是甲種樹苗的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案