對于任意k∈[-1,1],函數(shù)f(x)=x2+(k-4)x-2k+4的值恒大于零,則x的取值范圍是
 
分析:由題意先對函數(shù)y進行求導,解出極值點,然后再根據(jù)函數(shù)的定義域,把極值點和區(qū)間端點值代入已知函數(shù),比較函數(shù)值的大小,求出最大值,從而求解.
解答:解:∵任意k∈[-1,1],函數(shù)f(x)=x2+(k-4)x-2k+4>0,恒成立,
∴f(k)=k(x-2)+x2-4x+4>0為一次函數(shù),
f(-1)>0
f(1)>0

∴-1(x-2)+x2-4x+4>0,
(x-2)+x2-4x+4>0,
解得x<1或x>3,
故答案為(-∞,1)∪(3,+∞).
點評:此題是一道常見的題型,把關于x的函數(shù)轉化為關于k的函數(shù),構造一次函數(shù),因為一次函數(shù)是單調函數(shù)易于求解,最此類恒成立題要注意.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

對于任意k∈[-1,1],函數(shù)f(x)=x2+(k-4)x-2k+4的值恒大于零,則x的取值范圍是()
A、x<0B、x>4C、x<1或x>3D、x<1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

15、已知f(x)是定義域為正整數(shù)集的函數(shù),對于定義域內任意的k,若f(k)≥k2成立,則f(k+1)≥(k+1)2成立,下列命題成立的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年河北省保定市蠡縣中學高三(上)第一次月考數(shù)學試卷(解析版) 題型:選擇題

對于任意k∈[-1,1],函數(shù)f(x)=x2+(k-4)x-2k+4的值恒大于零,則x的取值范圍是()
A.x<0
B.x>4
C.x<1或x>3
D.x<1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

對于任意k∈[-1,1],函數(shù)f(x)=x2+(k-4)x-2k+4的值恒大于零,則x的取值范圍是______.

查看答案和解析>>

同步練習冊答案