1. 已知半橢圓與半橢圓組成的曲線稱為“果圓”,其中,是對應(yīng)的焦點(diǎn)。A1,A2和B1,B2是“果圓”與x,y軸的交點(diǎn),M是線段A1A2的中點(diǎn).
(1) 若三角形是底邊F1F2長為6,腰長為5的等腰三角形,求“果圓”的方程;
(2)若“果圓”方程為:,過F0的直線l交“果圓”于y軸右邊的Q,N點(diǎn),求△OQN的面積S△OQN的取值范圍
(3) 若是“果圓”上任意一點(diǎn),求取得最小值時點(diǎn)的橫坐標(biāo).
(1),
(2)
(3)或
【解析】(I)∵
∴,,
于是,c2=16,a2=b2+c2=41,
所求“果圓”方程為,
(Ⅱ)①若直線l的斜率k存在,則由圖可知,k2>3.設(shè)直線l的方程為:y=k(x-1),設(shè)點(diǎn)Q,N的坐標(biāo)分別為(x1,y1),(x2,y2)
由消x,得
∴,
∴
∵[來源:學(xué)*科*網(wǎng)]
②若直線l⊥x軸,則︱QN︱=3,故
綜上,得
(3)設(shè)是“果圓”的半橢圓上任意一點(diǎn).設(shè),則
,
, 的最小值只能在或處取到.
即當(dāng)取得最小值時,在點(diǎn)或處.
,且和同時位于“果圓”的半橢圓和半橢圓上當(dāng)位于“果圓”的半橢圓上時.
[來源:Zxxk.Com]
.
當(dāng),即時,的最小值在時取到,
此時的橫坐標(biāo)是.
當(dāng),即時,由于在時是遞減的,的最小值在時取到,此時的橫坐標(biāo)是.
綜上所述,若,當(dāng)取得最小值時,點(diǎn)的橫坐標(biāo)是;若,當(dāng)取得最小值時,點(diǎn)的橫坐標(biāo)是或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(07年上海卷理)(18分)
已知半橢圓與半橢圓組成的曲線稱為“果圓”,其中。如圖,設(shè)點(diǎn),,是相應(yīng)橢圓的焦點(diǎn),,和,是“果圓” 與,軸的交點(diǎn),
(1)若三角形是邊長為1的等邊三角形,求“果圓”的方程;
(2)若,求的取值范圍;
(3)一條直線與果圓交于兩點(diǎn),兩點(diǎn)的連線段稱為果圓的弦。是否存在實(shí)數(shù),使得斜率為的直線交果圓于兩點(diǎn),得到的弦的中點(diǎn)的軌跡方程落在某個橢圓上?若存在,求出所有的值;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年上海市上海交大附中高二下學(xué)期期中考試數(shù)學(xué) 題型:解答題
已知半橢圓與半橢圓組成的曲線稱為“果圓”,其中,是對應(yīng)的焦點(diǎn)。A1,A2和B1,B2是“果圓”與x,y軸的交點(diǎn),M是線段A1A2的中點(diǎn).
(1) 若三角形是底邊F1F2長為6,腰長為5的等腰三角形,求“果圓”的方程;
(2)若“果圓”方程為:,過F0的直線l交“果圓”于y軸右邊的Q,N點(diǎn),求△OQN的面積S△OQN的取值范圍
(3) 若是“果圓”上任意一點(diǎn),求取得最小值時點(diǎn)的橫坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2007年普通高等學(xué)校招生全國統(tǒng)一考試?yán)砜茢?shù)學(xué)卷(上海) 題型:解答題
已知半橢圓與半橢圓組成的曲線稱為“果圓”,其中。如圖,設(shè)點(diǎn),,是相應(yīng)橢圓的焦點(diǎn),,和,是“果圓” 與,軸的交點(diǎn),
(1)若三角形是邊長為1的等邊三角形,求“果圓”的方程;
(2)若,求的取值范圍;
(3)一條直線與果圓交于兩點(diǎn),兩點(diǎn)的連線段稱為果圓的弦。是否存在實(shí)數(shù),使得斜率為的直線交果圓于兩點(diǎn),得到的弦的中點(diǎn)的軌跡方程落在某個橢圓上?若存在,求出所有的值;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com