(13分)設(shè)
(1)討論函數(shù) 的單調(diào)性。
(2)求證:
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知a為實數(shù),
(1)求導(dǎo)數(shù);
(2)若,求在[-2,2] 上的最大值和最小值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù),
(Ⅰ)討論函數(shù)的單調(diào)區(qū)間和極值點;
(Ⅱ)若函數(shù)有極值點,記過點與原點的直線斜率為。是否存在使?若存在,求出值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知函數(shù) 。
如果,函數(shù)在區(qū)間上存在極值,求實數(shù)a的取值范圍;
當時,不等式恒成立,求實數(shù)k的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)=(為自然對數(shù)的底數(shù)),,記.
(1)為的導(dǎo)函數(shù),判斷函數(shù)的單調(diào)性,并加以證明;
(2)若函數(shù)=0有兩個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),(為自然對數(shù)的底數(shù))。
(1)當時,求函數(shù)在區(qū)間上的最大值和最小值;
(2)若對任意給定的,在上總存在兩個不同的,使得成立,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知函數(shù).
(1)若曲線在點處的切線與直線垂直,求函數(shù)的單調(diào)區(qū)間;
(2)若對于都有成立,試求的取值范圍;
(3)記.當時,函數(shù)在區(qū)間上有兩個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
本小題滿分12分)設(shè)函數(shù)f(x)= ,其中
(1)求f(x)的單調(diào)區(qū)間;(2)討論f(x)的極值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com