5.設(shè)極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸.已知曲線C的極坐標(biāo)方程為ρ=8sinθ
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)直線$\left\{\begin{array}{l}x=t\\ y=t+2\end{array}\right.$(t為參數(shù))與曲線C交于A,B兩點(diǎn),求AB的長.

分析 (1)曲線C的極坐標(biāo)方程為ρ=8sinθ,即ρ2=8ρsinθ.利用互化公式可得曲線C的直角坐標(biāo)方程.
(2)設(shè)直線$\left\{\begin{array}{l}x=t\\ y=t+2\end{array}\right.$(t為參數(shù))的直角坐標(biāo)方程為y=x+2.x2+y2=8y,配方為x2+(y-4)2=16,可得圓心C(0,4),半徑r=4.求出圓心C到直線的距離d.可得|AB|=2$\sqrt{{r}^{2}-dh75bpx^{2}}$.

解答 解:(1)曲線C的極坐標(biāo)方程為ρ=8sinθ,即ρ2=8ρsinθ.
∴曲線C的直角坐標(biāo)方程為x2+y2=8y.
(2)設(shè)直線$\left\{\begin{array}{l}x=t\\ y=t+2\end{array}\right.$(t為參數(shù))的直角坐標(biāo)方程為y=x+2.
x2+y2=8y,配方為x2+(y-4)2=16,可得圓心C(0,4),半徑r=4.
∴圓心C到直線的距離d=$\frac{|0-4+2|}{\sqrt{2}}$=$\sqrt{2}$.
∴|AB|=2$\sqrt{{r}^{2}-jnjdpbn^{2}}$=2$\sqrt{14}$.

點(diǎn)評 本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程、點(diǎn)到直線的距離公式公式、直線與圓直角弦長問題,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知命題“若{an}是常數(shù)列,則{an}是等差數(shù)列”,在其逆命題、否命題和逆否命題中,假命題的個數(shù)是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在四棱錐P-ABCD中,AD∥BC,∠BAD=90°,PA=PD,AB⊥PA,AD=2,AB=BC=1
(Ⅰ)求證:平面PAD⊥平面ABCD
(Ⅱ)若E為PD的中點(diǎn),求證:CE∥平面PAB
(Ⅲ)若DC與平面PAB所成的角為30°,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)不等式$\left\{\begin{array}{l}x≥1\\ x-y≤0\\ x+y≤4\end{array}\right.$表示的平面區(qū)域?yàn)镸,若直線y=kx-2上存在M內(nèi)的點(diǎn),則實(shí)數(shù)k的取值范圍是[2,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知a>0,b>0,c>2,且a+b=2,則$\frac{ac}+\frac{c}{ab}-\frac{c}{2}+\frac{{\sqrt{5}}}{c-2}$的最小值為$\sqrt{10}$+$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知冪函數(shù)y=f(x)過點(diǎn)(2,8),則f(3)=( 。
A.27B.9C.8D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x-1)=2x-$\sqrt{x}$,則f(3)=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.計(jì)算:sin(-$\frac{16π}{3}$)=$\frac{\sqrt{3}}{2}$,cos(-$\frac{8π}{3}$)=$-\frac{1}{2}$,tan(-$\frac{17}{4}$π)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.平面內(nèi)動點(diǎn)P(x,y)與兩定點(diǎn)A(-2,0)、B(2,0)連線的斜率之積等于-$\frac{1}{3}$,若點(diǎn)P的軌跡為曲線E,過點(diǎn)Q(-1,0)作斜率不為零的直線CD交曲線E于C、D兩點(diǎn)
(Ⅰ)求曲線E的方程
(Ⅱ)求證:AC⊥AD
(Ⅲ)求四邊形ACOD面積的最大值(O為坐標(biāo)原點(diǎn))

查看答案和解析>>

同步練習(xí)冊答案