【題目】函數(shù)的一段圖象過點(0,1),如圖所示.
(1)求函數(shù)的表達(dá)式;
(2)將函數(shù)的圖象向右平移個單位,得函數(shù)的圖象,求的最大值,并求出此時自變量x的集合;
(3)若,求的值.
【答案】(1) ;(2)2,;(3)0.
【解析】
(1)通過三個連續(xù)零點的值可以求出函數(shù)的周期,根據(jù)最小正周期公式可以求出的值,
根據(jù)圖象平移的特點可以求出的值,再把點(0,1)的坐標(biāo)代入解析式中,可以求出A的值;
(2)根據(jù)正弦型函數(shù)的圖象變換特點可以求出的解析式,結(jié)合正弦型函數(shù)的性質(zhì)最后求出的最大值,并求出此時自變量x的集合;
(3)根據(jù)可求出的表達(dá)式,最后可以計算出的值.
(1)由圖知,T=π,于是ω==2.將y=Asin2x的圖象向左平移,
得y=Asin(2x+φ)的圖象,于是φ=2·=.將(0,1)代入y=Asin(2x+),得A=2.
故.
(2)依題意,f2(x)=2sin[2(x-)+]=-2cos(2x+),
當(dāng)2x+=2kπ+π,即x=kπ+ (k∈Z)時,ymax=2.
x的取值集合為.
(3)因為,所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求的零點;
(2)若有兩個零點,求實數(shù)的取值范圍.
(3)若有三個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,.
(1)當(dāng)時,若對任意均有成立,求實數(shù)的取值范圍;
(2)設(shè)直線與曲線和曲線相切,切點分別為,,其中.
①求證:;
②當(dāng)時,關(guān)于的不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知正三棱錐,為中點,過點作截面交,分別于點,,且,分別為,的中點.
(1)證明:平面;
(2)若,,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的有________(只填序號)
①若直線與平面有無數(shù)個公共點,則直線在平面內(nèi);
②若直線l上有無數(shù)個點不在平面α內(nèi),則l∥α;
③若兩條異面直線中的一條與一個平面平行,則另一條直線一定與該平面相交;
④若直線l與平面α平行,則l與平面α內(nèi)的直線平行或異面;
⑤若平面α∥平面β,直線aα,直線bβ,則直線a∥b.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列,且為該數(shù)列的前項和.
(1)寫出數(shù)列的通項公式;
(2)計算,猜想的表達(dá)式,并用數(shù)學(xué)歸納法證明;
(3)求數(shù)列的前項和的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年2月22日,在韓國平昌冬奧會短道速滑男子米比賽中,中國選手武大靖以連續(xù)打破世界紀(jì)錄的優(yōu)異表現(xiàn),為中國代表隊奪得了本屆冬奧會的首枚金牌,也創(chuàng)造了中國男子冰上競速項目在冬奧會金牌零的突破.根據(jù)短道速滑男子米的比賽規(guī)則,運動員自出發(fā)點出發(fā)進(jìn)入滑行階段后,每滑行一圈都要依次經(jīng)過個直道與彎道的交接口.已知某男子速滑運動員順利通過每個交接口的概率均為,摔倒的概率均為.假定運動員只有在摔倒或到達(dá)終點時才停止滑行,現(xiàn)在用表示該運動員滑行最后一圈時在這一圈內(nèi)已經(jīng)順利通過的交接口數(shù).
(1)求該運動員停止滑行時恰好已順利通過個交接口的概率;
(2)求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知下列命題其中正確的有( )
A.“實數(shù)都大于0”的否定是“實數(shù)都小于或等于0”
B.“三角形外角和為360度”是含有全稱量詞的真命題
C.“至少存在一個實數(shù),使得”是含有存在量詞的真命題
D.“能被3整除的整數(shù),其各位數(shù)字之和也能被3整除”是全稱量詞命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.在購進(jìn)機器時,可以一次性額外購買幾次維修服務(wù),每次維修服務(wù)費用200元,另外實際維修一次還需向維修人員支付小費,小費每次50元.在機器使用期間,如果維修次數(shù)超過購機時購買的維修服務(wù)次數(shù),則每維修一次需支付維修服務(wù)費用500元,無需支付小費.現(xiàn)需決策在購買機器時應(yīng)同時一次性購買幾次維修服務(wù),為此搜集并整理了100臺這種機器在三年使用期內(nèi)的維修次數(shù),得下面統(tǒng)計表:
維修次數(shù) | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 10 | 20 | 30 | 30 | 10 |
以這100臺機器維修次數(shù)的頻率代替1臺機器維修次數(shù)發(fā)生的概率, 記表示1臺機器三年內(nèi)共需維修的次數(shù),表示購買1臺機器的同時購買的維修次數(shù).
(1)求的分布列;
(2)若要求,確定的最小值;
(3)以在維修上所需費用的期望值為決策依據(jù),在與之中選其一,應(yīng)選用哪個?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com