關(guān)于直線m、n與平面α、β,有下列四個命題:
①m∥α,n∥β且α∥β,則m∥n;    
②m⊥α,n⊥β且α⊥β,則m⊥n;
③m⊥α,n∥β且α∥β,則m⊥n;   
④m∥α,n⊥β且α⊥β,則m∥n.
其中正確命題的個數(shù)是(  )
A、1B、2C、3D、4
考點(diǎn):空間中直線與平面之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:利用線面關(guān)系定理,對四個命題分別分析,找出正確命題.
解答: 解:①根據(jù)面面平行的性質(zhì)定理知,m和n是第三個平面與此平面的交線時,有m∥n,m,n也可能是異面;故①錯誤;
②∵α⊥β,m⊥α,∴在β存在與m平行的直線,再由n⊥β得m⊥n,故②正確;
③由m⊥α,α∥β得m⊥β,再由n∥β得m⊥n,故③正確;
④當(dāng)m?β時,由n⊥β得到m⊥n,故④錯.
綜上正確命題是②③,共有2個;
故選B.
點(diǎn)評:本題考查了空間的線面位置關(guān)系,解決此類問題,注意定理中的關(guān)鍵條件以及特殊情況,主要根據(jù)垂直和平行定理進(jìn)行判斷,考查了空間想象能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某電視臺連續(xù)播放6個廣告,三個不同的商業(yè)廣告,三個不同的奧運(yùn)宣傳廣告,要求最后播放的不能是商業(yè)廣告,且奧運(yùn)宣傳廣告兩兩不能連續(xù)播放,則不同的播放方式有( 。
A、48種B、98種
C、108種D、120種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在x=-
π
3
時,函數(shù)g(x)=cos(2x+α)取得最小值,求使f(x)=sin(2x-α)的最大值的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若曲線C上的點(diǎn)P(x,y)到定點(diǎn)A(0,-2)的距離和到定直線y=-8的距離之比為1:2,則該曲線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={0,1,2,3},N={x||x|<3,x為偶數(shù)},現(xiàn)從集合A中隨機(jī)地抽取一個數(shù)a,從集合B中隨機(jī)地抽取一個數(shù)b.
(1)計算a≥1或b≥1的概率;
(2)令ξ=a•b,求隨機(jī)變量ξ的概率分布和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)據(jù)x1,x2,…,x8 平均數(shù)為4,方差為2,則數(shù)據(jù) 2x1-6,2x2-6,…,2x8-6 的平均數(shù)為
 
,方差為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=3,an+1=an+ln(1+
1
n
),則an=( 。
A、3+lnn
B、3+(n-1)lnn
C、3+nlnn
D、1+n+lnn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=cos(x-
π
2
)+tan(π+x)是
 
函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知log3x=(log3y)2
(1)若x=3y,求x,y的值;
(2)當(dāng)x,y為何值時,
x
y
取得最小值?并求出最小值.

查看答案和解析>>

同步練習(xí)冊答案