【題目】已知拋物線的方程是,直線交拋物線于兩點(diǎn)

(1)若弦AB的中點(diǎn)為,求弦AB的直線方程;

(2)設(shè),若,求證AB過(guò)定點(diǎn).

【答案】(1)y=x+1(2)見(jiàn)證明

【解析】

(1)設(shè)出A,B的坐標(biāo),結(jié)合弦AB的中點(diǎn)坐標(biāo),建立等式,計(jì)算直線AB的斜率,得到直線方程,即可.(2)設(shè)出AB的直線方程,代入拋物線方程,得到二次等式,結(jié)合根與系數(shù)的關(guān)系,得到AB的方程,計(jì)算定點(diǎn),即可.

(1)因?yàn)閽佄锞的方程為,設(shè),

則有x1x2

,,

因?yàn)橄?/span>AB的中點(diǎn)為(3,3),

兩式相減得,

所以,經(jīng)驗(yàn)證符合題意.

所以直線l的方程為y-3=x-3),即y=x+1 ;

(2)當(dāng)AB斜率存在時(shí),設(shè)AB方程為y=kx+b代入拋物線方程:

ky2-4y+4b=0,

,,

AB方程為y=kx-3k=k(x-3),恒過(guò)定點(diǎn)(3,0).

當(dāng)AB斜率不存在時(shí),,則x1=x2=3,過(guò)點(diǎn)(3,0).

綜上,AB恒過(guò)定點(diǎn)(3,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)上沒(méi)有最小值,則的取值范圍是________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1)求函數(shù)的單調(diào)區(qū)間;

2)若恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若函數(shù)的最大值是,求的值;

2)已知,若存在兩個(gè)不同的正數(shù),當(dāng)函數(shù)的定義域?yàn)?/span>時(shí),的值域?yàn)?/span>,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】安慶市某中學(xué)教研室從高二年級(jí)隨機(jī)抽取了名學(xué)生的十月份語(yǔ)文成績(jī)(滿(mǎn)分分,成績(jī)均為不低于分的整數(shù)),得到如圖所示的頻率分布直方圖.

1)若該校高二年級(jí)共有學(xué)生人,試估計(jì)十月份月考語(yǔ)文成績(jī)不低于分的人數(shù);

2)為提高學(xué)生學(xué)習(xí)語(yǔ)文的興趣,學(xué)校決定在隨機(jī)抽取的名學(xué)生中成立“二幫一”小組,即從成績(jī)中選兩位同學(xué),共同幫助中的某一位同學(xué).已知甲同學(xué)的成績(jī)?yōu)?/span>分,乙同學(xué)的成績(jī)?yōu)?/span>分,求甲乙恰好被安排在同一小組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類(lèi)的,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:

甲說(shuō):“是作品獲得一等獎(jiǎng)”;

乙說(shuō):“作品獲得一等獎(jiǎng)”;

丙說(shuō):“兩項(xiàng)作品未獲得一等獎(jiǎng)”;

丁說(shuō):“是作品獲得一等獎(jiǎng)”.

若這四位同學(xué)中只有兩位說(shuō)的話(huà)是對(duì)的,則獲得一等獎(jiǎng)的作品是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知函數(shù)

(1)證明:當(dāng)恒成立;

(2)若函數(shù)恰有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)若曲線上一點(diǎn)的極坐標(biāo)為,且過(guò)點(diǎn),求的普通方程和的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)的交點(diǎn)為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)盒子中裝有6張卡片,上面分別寫(xiě)著如下六個(gè)定義域?yàn)?/span>的函數(shù):, ,, ,從盒子中任取2張卡片,將卡片上的函數(shù)相乘得到一個(gè)新函數(shù),所得新函數(shù)為奇函數(shù)的概率是 __________

查看答案和解析>>

同步練習(xí)冊(cè)答案