直線EF平行于平面α內(nèi)的兩條直線ABCDEFα的距離是15,與AB的距離是17,又ABCD的距離是28,則EFCD的距離是________.

答案:25或39
提示:

根據(jù)所構(gòu)造的直角三角形求解.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知ABCD為平行四邊形,∠A=60°,AF=2FB,AB=6,點E在CD上,EF∥BC,BD⊥AD,BD與EF相交于N.現(xiàn)將四邊形ADEF沿EF折起,使點D在平面BCEF上的射影恰在直線BC上.
精英家教網(wǎng)
(Ⅰ)求證:BD⊥平面BCEF;
(Ⅱ)求折后直線DN與直線BF所成角的余弦值;
(Ⅲ)求三棱錐N-ABF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,E、F分別為直角三角形ABC的直角邊AC和斜邊AB的中點,沿EF將△AEF折起到△A′EF的位置,連接A′B、A′C.
(Ⅰ)求證:平面A′EC⊥平面A′BC;
(Ⅱ)求證:AA′⊥平面A′BC;
(Ⅲ)過EF作一平面EFPQ同時與直線AA′、BC平行設(shè)交A′B、A′C分別于P、Q兩點,試指出P、Q的位置,并求截面EFPQ分四面體A′ABC的兩部分的體積比:VA'AEFPQ:VPQEFBC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直線AB、CD、EF兩兩平行,且分別與直線l相交于A、C、E,求證:AB、CD、EF三條直線在同一平面內(nèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:022

直線EF平行于平面α內(nèi)的兩條直線ABCD,EFα的距離是15,與AB的距離是17,又ABCD的距離是28,則EFCD的距離是________.

查看答案和解析>>

同步練習(xí)冊答案