不等式對任意實(shí)數(shù)恒成立,則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
C
【解析】
試題分析:要使不等式恒成立,需f(x)=|x+3|+|x-1|的最小值大于a,問題轉(zhuǎn)化為求f(x)的最小值.解:(1)設(shè)f(x)=|x+3|+|x-1|,則有f(x)=
當(dāng)x<-3時(shí),f(x)有最小值4;當(dāng)-3≤x≤1時(shí),f(x)有最小值4;
當(dāng)x>1時(shí),f(x)>4.綜上f(x)有最小值-4,所以,a<4.
故答案為C.
考點(diǎn):絕對值不等式
點(diǎn)評:本題考查絕對值不等式的解法,體現(xiàn)了等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 | ||
|
1 | ||
|
1 | ||
|
d2 |
2 |
d3 |
3 |
dn |
n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(16分)已知:數(shù)列,中,=0,=1,且當(dāng)時(shí),,,成等差數(shù)列,,,成等比數(shù)列.
(1)求數(shù)列,的通項(xiàng)公式;
(2)求最小自然數(shù),使得當(dāng)≥時(shí),對任意實(shí)數(shù),不等式≥恒成立;
(3)設(shè) (∈),求證:當(dāng)≥2都有>2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011屆江蘇省撫州調(diào)研室高三模擬考試數(shù)學(xué)理卷 題型:解答題
本小題滿分14分
已知:數(shù)列,中,,,且當(dāng)時(shí),,,成等差數(shù)列,,,成等比數(shù)列.
(1)求數(shù)列,的通項(xiàng)公式;
(2)求最小自然數(shù),使得當(dāng)時(shí),對任意實(shí)數(shù),不等式≥恒成立;
(3)設(shè)(),求證:當(dāng)都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省撫州調(diào)研室高三模擬考試數(shù)學(xué)理卷 題型:解答題
本小題滿分14分
已知:數(shù)列,中,,,且當(dāng)時(shí),,,成等差數(shù)列,,,成等比數(shù)列.
(1)求數(shù)列,的通項(xiàng)公式;
(2)求最小自然數(shù),使得當(dāng)時(shí),對任意實(shí)數(shù),不等式≥恒成立;
(3)設(shè)(),求證:當(dāng)都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
本小題滿分14分
已知:數(shù)列,中,,,且當(dāng)時(shí),,,成等差數(shù)列,,,成等比數(shù)列.
(1)求數(shù)列,的通項(xiàng)公式;
(2)求最小自然數(shù),使得當(dāng)時(shí),對任意實(shí)數(shù),不等式≥恒成立;
(3)設(shè)(),求證:當(dāng)都有.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com