8.已知向量$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角為120°,且$|{\overrightarrow{AB}}|=1$,$|{\overrightarrow{AC}}|=2$,若$\overrightarrow{AP}=\overrightarrow{AB}+λ\overrightarrow{AC}$,且$\overrightarrow{AP}⊥\overrightarrow{BC}$,則實(shí)數(shù)λ的值為( 。
A.$\frac{4}{5}$B.$-\frac{4}{5}$C.$\frac{2}{5}$D.$-\frac{2}{5}$

分析 根據(jù)向量數(shù)量積的公式,結(jié)合向量垂直的關(guān)系即可得到結(jié)論.

解答 解:∵向量$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角為120°,且$|{\overrightarrow{AB}}|=1$,$|{\overrightarrow{AC}}|=2$,
∴$\overrightarrow{AB}•\overrightarrow{AC}$=$|\overrightarrow{AB}||\overrightarrow{AC}|$cos120°=1×2×(-$\frac{1}{2}$)=-1,
∵$\overrightarrow{AP}=\overrightarrow{AB}+λ\overrightarrow{AC}$,且$\overrightarrow{AP}⊥\overrightarrow{BC}$,
∴$\overrightarrow{AP}•\overrightarrow{BC}$=($\overrightarrow{AB}+λ\overrightarrow{AC}$)•($\overrightarrow{AC}-\overrightarrow{AB}$)=0,
即$-|\overrightarrow{AB}{|}^{2}+λ|\overrightarrow{AC}{|}^{2}+(1-λ)\overrightarrow{AB}•\overrightarrow{AC}=0$,
∴-1+4λ-(1-λ)=0,
解得λ=$\frac{2}{5}$.
故選:C.

點(diǎn)評(píng) 本題主要考查平面向量的基本運(yùn)算,利用向量垂直和數(shù)量積之間的關(guān)系是解決本題的關(guān)鍵,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.我國古代名著《考工記》中有“一尺之棰,日取其半,萬世不竭”,如圖給出的是計(jì)算截取了6天所剩棰長的程序框圖,其中判斷框內(nèi)應(yīng)填入的是( 。
A.i≤16?B.i≤32?C.i≤64?D.i≤128?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知$α,β∈({\frac{3π}{4},π})$,$cos(α+β)=\frac{4}{5},cos(β-\frac{π}{4})=-\frac{5}{13}$,則$sin(α+\frac{π}{4})$=( 。
A.$\frac{33}{65}$B.$-\frac{33}{65}$C.$-\frac{16}{65}$D.$\frac{16}{65}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知|$\overrightarrow{a}$|=4,|$\overrightarrow$|=5,$\overrightarrow{c}$=λ$\overrightarrow{a}$+μ$\overrightarrow$(λ,μ∈R),若$\overrightarrow{a}$⊥$\overrightarrow$,$\overrightarrow{c}$⊥($\overrightarrow$-$\overrightarrow{a}$),則$\frac{λ}{μ}$=$\frac{25}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)$f(x)=\frac{1}{2}{x^2}-({a-1})x-alnx$.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)已知函數(shù)f(x)有極值m,求證:m<1.
(已知ln0.5≈-0.69,ln0.6≈-0.51)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦點(diǎn)是F,左、右頂點(diǎn)分別是A1,A2,過F做x軸的垂線交雙曲線于B,C兩點(diǎn),若A1B⊥A2C,則雙曲線的離心率為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.共享單車是指企業(yè)與政府合作,在公共服務(wù)區(qū)等地方提供自行車單車共享服務(wù),現(xiàn)從6輛黃色共享單車和4輛藍(lán)色共享單車中任取4輛進(jìn)行檢查,則至少有兩個(gè)藍(lán)色共享單車的取法種數(shù)是115.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知方程(m2-2m-3)x+(2m2+m-1)y+6-2m=0(m∈R).
(1)當(dāng)m為何實(shí)數(shù)時(shí),方程表示的直線斜率不存在?求出這時(shí)的直線方程;
(2)已知方程表示的直線l在x軸上的截距為-3,求實(shí)數(shù)m的值;
(3)若方程表示的直線l的傾斜角是45°,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示.
(1)求f(x)的解析式;
(2)求f(x)在[0,$\frac{π}{2}$]上的最大、最小值及相應(yīng)的x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案