(本小題滿分12分)
己知圓C: (x – 2 )2 + y 2 =" 9," 直線l:x + y = 0.
(1) 求與圓C相切, 且與直線l平行的直線m的方程;
(2) 若直線n與圓C有公共點(diǎn),且與直線l垂直,求直線n在y軸上的截距b的取值范圍;
(1) x + y – 2 +3="0," 或x + y – 2 –3="0." (2) – 2–3£ b £ – 2+3
解析試題分析:(1) ∵直線m∥直線x + y = 0,
∴設(shè)m: x + y + c = 0,∵直線m與圓C相切,∴ 3 = ,
解得 c =" –" 2 ±3
得直線m的方程為:x + y – 2 +3="0," 或x + y – 2 –3="0."
(2) 由條件設(shè)直線n的方程為:y = x +b ,
代入圓C方程整理得:2x2 +2 (b – 2)x + b2 – 5 = 0,
∵直線l與圓C有公共點(diǎn),
∴ △ =" 4(b" – 2)2 – 8(b2 – 5 ) =" –" 4b2 – 16b +56 ≥ 0,即:b2 + 4b –14 £ 0
解得:– 2–3£ b £ – 2+3
考點(diǎn):本試題考查了兩直線的位置關(guān)系。
點(diǎn)評(píng):運(yùn)用兩直線的平行的關(guān)系來設(shè)出所求的直線方程,并代點(diǎn)來求解方程。同時(shí)要理解截距的概念,表示的為數(shù)字,不是距離,是一個(gè)可正可負(fù)的數(shù)字。結(jié)合直線與圓的位置關(guān)系得到取值范圍,屬于中檔題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知圓 的圓心為,過點(diǎn)且斜率為的直線與圓相交于不同的兩點(diǎn).
(Ⅰ)求的取值范圍;
(Ⅱ)以O(shè)A,OB為鄰邊作平行四邊形OADB,是否存在常數(shù),使得直線OD與PQ平行?如果存在,求值;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
求經(jīng)過三點(diǎn)A,B(), C(0,6)的圓的方程,并指出這個(gè)圓的半徑和圓心坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(理)(本題滿分14分)如圖,已知直線,直線以及上一點(diǎn).
(Ⅰ)求圓心M在上且與直線相切于點(diǎn)的圓⊙M的方程.
(Ⅱ)在(Ⅰ)的條件下;若直線分別與直線、圓⊙依次相交于A、B、C三點(diǎn),
求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分15分)已知橢圓上的動(dòng)點(diǎn)到焦點(diǎn)距離的最小值為。以原點(diǎn)為圓心、橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點(diǎn)(2,0)的直線與橢圓相交于兩點(diǎn),為橢圓上一點(diǎn), 且滿足
(為坐標(biāo)原點(diǎn))。當(dāng) 時(shí),求實(shí)數(shù)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com