在數(shù)列{an},a12an14an3n1,nN*.

(1)求證:數(shù)列{ann}是等比數(shù)列;

(2)求數(shù)列{an}的前n項(xiàng)和Sn

(3)求證:不等式Sn14Sn對(duì)任意n∈N*皆成立.

 

1)見(jiàn)解析(23)見(jiàn)解析

【解析】(1)證明:由題設(shè)an14an3n1,an1(n1)4(ann),nN*.a111,所以數(shù)列{ann}是首項(xiàng)為1,公比為4的等比數(shù)列.

(2)【解析】
(1)可知ann4n1,于是數(shù)列{an}的通項(xiàng)公式為an4n1n,所以數(shù)列{an}的前n項(xiàng)和Sn.

(3)證明:對(duì)任意的n∈N*Sn14Sn=- (3n2n4)≤0,所以不等式Sn14Sn對(duì)任意n∈N*皆成立.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第1課時(shí)練習(xí)卷(解析版) 題型:解答題

如圖,四邊形ABEFABCD都是直角梯形,∠BAD∠FAB90°,BC∥=AD,BE=FAG、H分別為FA、FD的中點(diǎn).

(1)證明:四邊形BCHG是平行四邊形.

(2)CD、F、E四點(diǎn)是否共面?為什么?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第4課時(shí)練習(xí)卷(解析版) 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和為Sn對(duì)一切正整數(shù)n,點(diǎn)Pn(n,Sn)都在函數(shù)f(x)x22x的圖象上,且在點(diǎn)Pn(nSn)處的切線的斜率為kn.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)bn2knan求數(shù)列{bn}的前n項(xiàng)和Tn.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第3課時(shí)練習(xí)卷(解析版) 題型:解答題

已知數(shù)列{an}的首項(xiàng)a12a1(a是常數(shù),a≠1),

an2an1n24n2(n≥2),數(shù)列{bn}的首項(xiàng)b1a,

bnann2(n≥2)

(1)證明:{bn}從第2項(xiàng)起是以2為公比的等比數(shù)列;

(2)設(shè)Sn為數(shù)列{bn}的前n項(xiàng)和,{Sn}是等比數(shù)列,求實(shí)數(shù)a的值;

(3)當(dāng)a>0時(shí)求數(shù)列{an}的最小項(xiàng).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第3課時(shí)練習(xí)卷(解析版) 題型:填空題

已知數(shù)列{an}滿足3an1an0,a2=-{an}的前10項(xiàng)和為________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第3課時(shí)練習(xí)卷(解析版) 題型:填空題

等比數(shù)列{an},a1>0a2a42a3a5a4a636,a3a5________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第2課時(shí)練習(xí)卷(解析版) 題型:填空題

設(shè)等差數(shù)列{an}的前n項(xiàng)和為SnSm1=-2,Sm0Sm13,m________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第1課時(shí)練習(xí)卷(解析版) 題型:解答題

若數(shù)列{an}滿足an1anan2(n∈N*)則稱數(shù)列{an}凸數(shù)列

(1)設(shè)數(shù)列{an}凸數(shù)列,a11a2=-2,試寫出該數(shù)列的前6項(xiàng),并求出前6項(xiàng)之和;

(2)凸數(shù)列”{an},求證:an3=-an,nN*

(3)設(shè)a1a,a2b,若數(shù)列{an}凸數(shù)列,求數(shù)列前2011項(xiàng)和S2011.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第8課時(shí)練習(xí)卷(解析版) 題型:解答題

設(shè)a0,f(x)R上的偶函數(shù).

(1)a的值;

(2)判斷并證明函數(shù)f(x)[0,∞)上的單調(diào)性;

(3)求函數(shù)的值域.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案