設(shè)a是實數(shù),且
a
1+i
+
1-i
2
是實數(shù),則a=( 。
A、
1
2
B、-1
C、1
D、2
考點:復(fù)數(shù)代數(shù)形式的混合運算
專題:數(shù)系的擴充和復(fù)數(shù)
分析:利用復(fù)數(shù)的運算法則、復(fù)數(shù)為實數(shù)的充要條件即可得出.
解答: 解:∵a是實數(shù),且
a
1+i
+
1-i
2
=
a(1-i)
(1+i)(1-i)
+
1-i
2
=
a-ai+1-i
2
=
a+1
2
-
a+1
2
i
是實數(shù),
-
a+1
2
=0,解得a=-1.
故選;B.
點評:本題考查了復(fù)數(shù)的運算法則、復(fù)數(shù)為實數(shù)的充要條件,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點O是△ABC的外接圓圓心,且AB=3,AC=4.若存在非零實數(shù)x、y,使得
AO
=x
AB
+y
AC
,且x+2y=1,則cos∠BAC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一批產(chǎn)品分為一、二、三級,其中一級品是二級品的2倍,三級品為二級品的一半,從這批產(chǎn)品中隨機抽取一個檢驗,其級別為隨機變量ξ,則Eξ的值為( 。
A、
11
7
B、
12
7
C、
13
7
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個命題中,正確命題的個數(shù)是( 。﹤
①若平面α∥平面β,直線m∥平面α,則m∥β;
②若平面α⊥平面γ,且平面β⊥平面γ,則α∥β;
③平面α⊥平面β,且α∩β=l,點A∈α,A∉l,若直線AB⊥l,則AB⊥β;
④直線m、n為異面直線,且m⊥平面α,n⊥平面β,若m⊥n,則α⊥β.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)∠A,∠B,∠C是△ABC的三個內(nèi)角,且tanA、
5
12
、tanB成等差數(shù)列,tanA、
6
6
、tanB成等比數(shù)列,則△ABC是( 。
A、銳角三角形
B、等邊三角形
C、鈍角三角形
D、等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩條不同的直線l1,l2平行的一個充分不必要條件是( 。
A、l1,l2都平行于同一個平面
B、l1,l2與同一個平面所成的角相等
C、l1平行于l2所在的平面
D、l1,l2都垂直于同一個平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個正四面體紙盒的俯視圖如圖所示,其中四邊形ABCD是邊長為3
2
的正方形,若在該正四面體紙盒內(nèi)放一個正方體,使正方體可以在紙盒內(nèi)任意轉(zhuǎn)動,則正方體棱長的最大值為( 。
A、
2
B、1
C、2
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:y=x2+x
(1)求在x=1處的切線方程;
(2)求過點P(1,1)的切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的三個圖中,上面的是一個長方體截去一個角所得多面體的直觀圖,它的正視圖和側(cè)視圖在下面畫出(單位:cm).
(1)按照畫三視圖的要求畫出該多面體的俯視圖; 
(2)在所給直觀圖中連接BC′,求證:BC′∥面EFG.

查看答案和解析>>

同步練習(xí)冊答案