設(shè)數(shù)列{an}的前n項和為Sn=2an-2n,
(Ⅰ)求a1,a4
(Ⅱ)證明:{an+1-2an}是等比數(shù)列;
(Ⅲ)求{an}的通項公式.
【答案】分析:(Ⅰ)令n=1得到s1=a1=2并推出an,令n=2求出a2,s2得到a3推出a4即可;
(Ⅱ)由已知得an+1-2an=(Sn+2n+1)-(Sn+2n)=2n+1-2n=2n即為等比數(shù)列;
(Ⅲ)an=(an-2an-1)+2(an-1-2an-2)++2n-2(a2-2a1)+2n-1a1=(n+1)•2n-1即可.
解答:解:(Ⅰ)因為a1=S1,2a1=S1+2,所以a1=2,S1=2
由2an=Sn+2n知2an+1=Sn+1+2n+1=an+1+Sn+2n+1
得an+1=sn+2n+1①
所以a2=S1+22=2+22=6,S2=8a3=S2+23=8+23=16,S2=24a4=S3+24=40
(Ⅱ)由題設(shè)和①式知an+1-2an=(Sn+2n+1)-(Sn+2n)=2n+1-2n=2n
所以{an+1-2an}是首項為2,公比為2的等比數(shù)列.
(Ⅲ)an=(an-2an-1)+2(an-1-2an-2)++2n-2(a2-2a1)+2n-1a1=(n+1)•2n-1
點評:此題重點考查數(shù)列的遞推公式,利用遞推公式求數(shù)列的特定項,通項公式等,同時考查學(xué)生掌握數(shù)列的遞推式以及等比數(shù)列的通項公式的能力.