已知橢圓的左、右焦點分別為、,P為橢圓 上任意一點,且的最小值為.
(1)求橢圓的方程;
(2)動圓與橢圓相交于A、B、C、D四點,當(dāng)為何值時,矩形ABCD的面積取得最大值?并求出其最大面積.
(1);(2)當(dāng)時,矩形ABCD的面積最大,最大面積為.
【解析】
試題分析:(1)由于(定值)這個條件并結(jié)合余弦定理以及的最小值為這個條件可以求出的值,并由已知條件中的值可以求出,并最終求出橢圓的方程;(2)先設(shè)出、、、中其中一個點的坐標,然后根據(jù)這四點之間的相互對稱性將四邊形的面積用該點的坐標進行表示,結(jié)合這一條件將面積轉(zhuǎn)化為其中一個變量的二次函數(shù),利用二次函數(shù)的求最值的思想求出四邊形面積的最大值,并可以求出對應(yīng)的值.
試題解析:(1)因為P是橢圓上一點,所以.
在△中,,由余弦定理得
.
因為,當(dāng)且僅當(dāng)時等號成立.
因為,所以.
因為的最小值為,所以,解得.
又,所以.所以橢圓C的方程為.
(2)設(shè),則矩形ABCD的面積.
因為,所以.
所以.
因為且,所以當(dāng)時,取得最大值24.
此時,.
所以當(dāng)時,矩形ABCD的面積最大,最大面積為.
考點:橢圓的定義、余弦定理、二次函數(shù)
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
3 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓的左、右焦點分別為,其右準線上上存在點(點在 軸上方),使為等腰三角形.
⑴求離心率的范圍;
⑵若橢圓上的點到兩焦點的距離之和為,求的內(nèi)切圓的方程.查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三下學(xué)期假期檢測考試理科數(shù)學(xué)試卷 題型:解答題
已知橢圓的左、右焦點分別為,, 點是橢圓的一個頂點,△是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點分別作直線,交橢圓于,兩點,設(shè)兩直線的斜率分別為,,且,證明:直線過定點().
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省三明市高三上學(xué)期三校聯(lián)考數(shù)學(xué)理卷 題型:解答題
(本題滿分14分) 已知橢圓的左、右焦點分別為F1、F2,其中
F2也是拋物線的焦點,M是C1與C2在第一象限的交點,且
(I)求橢圓C1的方程; (II)已知菱形ABCD的頂點A、C在橢圓C1上,頂點B、D在直線上,求直線AC的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年云南省德宏州高三高考復(fù)習(xí)數(shù)學(xué)試卷 題型:解答題
(本小題滿分12分)
已知橢圓的左、右焦點分別為、,離心率,右準線方程為.
(I)求橢圓的標準方程;
(II)過點的直線與該橢圓交于M、N兩點,且,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com