(本題14分)已知函數(shù),。
(1)當t=8時,求函數(shù)的單調(diào)區(qū)間;
(2)求證:當時,對任意正實數(shù)都成立;
(3)若存在正實數(shù),使得對任意的正實數(shù)都成立,請直接寫出滿足這樣條件的一個的值(不必給出求解過程)
(1)函數(shù)的單調(diào)遞增區(qū)間是單調(diào)遞減區(qū)間是(-2,2)。
(2)略
(3)存在正實數(shù)
【解析】解:(1)當
令………………………………………………………………1分
令
令…………………………………………………………3分
故所求的函數(shù)的單調(diào)遞增區(qū)間是單調(diào)遞減區(qū)間是(-2,2)!4分
(2)證明:令
……………………………………………………6分
……………………8分
的變化情況如下表
_ |
0 |
+ |
|
單調(diào)遞減 |
極小 |
單調(diào)遞增 |
…………………………11分
(3)存在正實數(shù)…14分
科目:高中數(shù)學(xué) 來源:2014屆湖南省高一12月月考數(shù)學(xué) 題型:解答題
(本題滿分14分)定義在D上的函數(shù),如果滿足;對任意,存在常數(shù),都有成立,則稱是D上的有界函數(shù),其中M稱為函數(shù)的上界。
已知函數(shù),
(1)當時,求函數(shù)在上的值域,并判斷函數(shù)在上是否為有界函數(shù),請說明理由;
(2)若函數(shù)在上是以3為上界函數(shù)值,求實數(shù)的取值范圍;
(3)若,求函數(shù)在上的上界T的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆湖南省高一12月月考數(shù)學(xué) 題型:解答題
(本題滿分14分)定義在D上的函數(shù),如果滿足;對任意,存在常數(shù),都有成立,則稱是D上的有界函數(shù),其中M稱為函數(shù)的上界。
已知函數(shù),
(1)當時,求函數(shù)在上的值域,并判斷函數(shù)在上是否為有界函數(shù),請說明理由;
(2)若函數(shù)在上是以3為上界函數(shù)值,求實數(shù)的取值范圍;
(3)若,求函數(shù)在上的上界T的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com