精英家教網 > 高中數學 > 題目詳情
已知集合A={x|y=
3-|x|
},B={y|y=a-2x-x2},其中a∈R,如果A⊆B,求實數a的取值范圍.
考點:集合的包含關系判斷及應用
專題:計算題,集合
分析:由題設條件,可先化簡兩個集合,再由兩個集合的包含關系得出參數的取值范圍即可
解答: 解:對于集合A:令3-|x|≥0,解得-3≤x≤3,即A={x|-3≤x≤3},
對于集合B:y=a-2x-x2=a+1-(x+1)2≤a+1,即B═{y|y≤a+1},
∵a∈R,A⊆B
∴a+1≥3,解得a≥2
綜上,實數a的取值范圍a≥2
點評:本題考查集合的包含關系及應用,解答的關鍵是化簡兩個集合及熟練利用集合的包含關系轉化
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=lnx,g(x)=
1
2
x2-2x
,當x>1時,不等式k(x-1)<xf(x)+2g′(x)+3恒成立,則整數k的最大值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)為R上的可導函數,且滿足f(x)>f′(x),對任意正實數a,下面不等式恒成立的是(  )
A、f(a)>
f(0)
ea
B、f(a)<
f(0)
ea
C、f(a)>eaf(0)
D、f(a)<eaf(0)

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長為1,E是AB的中點,P是B1C的中點.
(Ⅰ)求證:PB∥平面B1ED;
(Ⅱ)求點P到平面B1ED的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知|
a
|=8,|
b
|=6,且|
a
+
b
|=|
a
-
b
|,求|
a
-
b
|.

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系xOy中,設橢圓C的中心在原點,焦點在x軸上,短半軸長為2,橢圓C長軸的右端點到其右焦點的距離為
5
-1

(1)求橢圓C的方程.
(2)設直線l與橢圓C相交于A,B兩點,且∠AOB=
π
2
.求證:原點O到直線AB的距離為定值.
(3)在(2)的條件下,求AB的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

進入2013年后全國各地霧霾天氣頻發(fā),一個重要的誘因是空氣中細小顆粒物.我國新引入PM2.5來衡量大氣的質量.PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.我國PM2.5標準采用世衛(wèi)組織設定的最寬限值,PM2.5日均值在35微克/立方米以下空氣質量為一級;在35微克/立方米~75微克/立方米之間空氣質量為二級;在75微克/立方米及其以上空氣質量為超標.長沙市環(huán)保局從該市市區(qū)2013年1月份的PM2.5監(jiān)測數據中隨機抽取7天的數據作為樣本,監(jiān)測值如莖葉圖所示(十位為莖,個位為葉).
(Ⅰ)這7天的平均值是否超標?
(Ⅱ)若從這7天的數據中隨機抽出2天,求恰有一天空氣質量超標的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖是根據某賽季甲、乙兩名籃球運動員每場比賽得分情況畫出的莖葉圖.從這個莖葉圖可以看出甲、乙兩名運動員得分的中位數分別是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

雙曲線y2-
x2
m
=1
的離心率e=2,則以雙曲線的兩條漸近線與拋物線y2=mx的交點為頂點的三角形的面積為( 。
A、
3
B、9
3
C、27
3
D、36
3

查看答案和解析>>

同步練習冊答案