(本小題滿分15分)已知橢圓的左焦點是長軸的一個四等分點,點A、B分別為橢圓的左、右頂點,過點F且不與y軸垂直的直線交橢圓于C、D兩點,記直線AD、BC的斜率分別為
(1)當點D到兩焦點的距離之和為4,直線軸時,求的值;
(2)求的值。
(Ⅰ)解:由題意橢圓的離心率,所以,
故橢圓方程為,               ┄┄┄┄┄┄3分
則直線,,

當點軸上方時,,
所以,
當點軸下方時,同理可求得,
綜上,為所求.               ┄┄┄┄┄┄6分
(Ⅱ)解:因為,所以,
橢圓方程為,,直線,
,
得,,
所以┄┄┄┄┄┄8分
     ①
,及,┄┄10分
,
將①代入上式得,┄┄13分
注意到,得,┄┄14分
所以為所求.    ┄┄┄┄┄┄15分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

.橢圓的長軸長,短軸長,離心率依次是( )
A.5, 3, B.10, 6, C.5, 3 , D.10, 6,

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知 F1、F2是橢圓的兩焦點,是橢圓在第一象限弧上一點,且滿足=1.過點P作傾斜角互補的兩條直線PA、PB分別交橢圓于A、B兩點.
(1)求P點坐標;
(2)求證直線AB的斜率為定值;
(3)求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
橢圓過點,其左、右焦點分別為,離心率是直線上的兩個動點,且
(1)求橢圓的方程; (2)求的最小值;
(3)以為直徑的圓是否過定點?請證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)已知橢圓C的中心在坐標原點,離心率,且其中一個焦點與拋物線的焦點重合.(Ⅰ)求橢圓C的方程;(Ⅱ)過點的動直線l交橢圓CA、B兩點,試問:在坐標平面上是否存在一個定點T,使得無論l如何轉(zhuǎn)動,以AB為直徑的圓恒過點T,若存在,求出點T的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知點是橢圓上一點,是橢圓的兩焦點,且滿足
(Ⅰ) 求橢圓的兩焦點坐標;
(Ⅱ) 設點是橢圓上任意一點,如果最大時,求證、兩點關于原點不對稱.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓短軸是2,長軸是短軸的2倍,則橢圓中心到其準線的距離為
A        B       C       D

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓C: (a>b>0)的離心率為,短軸一個端點到右焦點的距離為
(1)求橢圓C的方程;
(2)設直線l與橢圓C交于A、B兩點,坐標原點O到直線l的距離為,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分16分) 如圖,設橢圓的右頂點與上頂點分別
為A、B,以A為圓心,OA為半徑的圓與以B為圓心,OB為半徑的圓相交于點O、P.

(1)求點P的坐標;
(2) 若點P在直線上,求橢圓的離心率;
(3) 在(2)的條件下,設M是橢圓上的一動點,且點N(0,1)到橢圓上點的最近距離為3,求橢圓的方程.

查看答案和解析>>

同步練習冊答案