|
(1) |
解:曲線C在Bn(an,bn)的切線BnAn+1斜率為: kn==2an 又∵kn== ∴=2an即:an+1=an ∴{an}為等比數(shù)列,公比為,首項(xiàng)a1=1 ∴{an}的通項(xiàng)an= |
(2) |
由(Ⅰ)知bn=an2= ∴Sn=|AnAn+1|·|AnBn|=×[-]×=∴cn=log2+1-3n……∵{cn}的前n項(xiàng)和Tn中,只有T2最大 ∴即: 解得:32<<256 |
(3) |
解:由(Ⅱ)知,數(shù)列{Sn}是等比數(shù)列,首項(xiàng)S1=,公比q= ∴Tn==(1-), ∴==1,即=, ∴Tn=1-,∴8cn=Tn-1+cn-18cn-cn-1=1-8ncn-8n-1cn-1=8n-1-1 ∴8ncn=(8ncn-8n-1cn-1)+(8n-1cn-1-8n-2cn-2)+…+(83c3-82c2)+(82c2-8c1)+8c1 =(8n-1-1)+(8n-2-1)+…(82-1)+(8-1)+8c1 =-(n-1)+=+1-n ∴所求通項(xiàng)cn=+ [評(píng)析]:在等差數(shù)列中,若則只有前n項(xiàng)和Tn最大,若則Tn與Tn+1同時(shí)達(dá)到最大;理科第(Ⅲ)題解題關(guān)鍵是構(gòu)造數(shù)列{8ncn},并用迭加 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044
如圖所示,已知圓的方程是(x-1)2+y2=1,四邊形PABQ為該圓內(nèi)接梯形,底邊AB為圓的直徑且在x軸上,以A,B為焦點(diǎn)的橢圓C過(guò)P,Q兩點(diǎn).
(1)若直線QP與橢圓C的右準(zhǔn)線相交于點(diǎn)M,求點(diǎn)M的軌跡方程;
(2)當(dāng)梯形PABQ周長(zhǎng)最大時(shí),求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044
如圖所示,橢圓方程為+=1(a>b>0),A,P,F(xiàn)分別為左頂點(diǎn),上頂點(diǎn),右焦點(diǎn),E為x軸正方向上一點(diǎn),且||,||,||成等比數(shù)列.又點(diǎn)N滿(mǎn)足=(+),PF的延長(zhǎng)線與橢圓的交點(diǎn)為Q,過(guò)Q與x軸平行的直線與PN的延長(zhǎng)線交于M.
(1)求證:·=·.
(2)若=2,且||=,求橢圓方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:成功之路·突破重點(diǎn)線·數(shù)學(xué)(學(xué)生用書(shū)) 題型:047
如圖所示,SA⊥正方形ABCD所在平面,過(guò)A作與SC垂直的平面分別交SB、SC、SD于E、K、H,求證:E、H分別是點(diǎn)A在直線SB和SD上的射影.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:湖南省十校聯(lián)考2007屆高三理科數(shù)學(xué)試題 題型:044
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2007屆潛山中學(xué)理復(fù)(一、二)數(shù)學(xué)周考試卷 題型:044
|
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com